python映射的主要特点_Python编程语言的35个与众不同之处(语言特征和使用技巧)...-程序员宅基地

技术标签: python映射的主要特点  

一、Python介绍

从我开始学习Python时我就决定维护一个经常使用的“窍门”列表。不论何时当我看到一段让我觉得“酷,这样也行!”的代码时(在一个例子中、在StackOverflow、在开源码软件中,等等),我会尝试它直到理解它,然后把它添加到列表中。这篇文章是清理过列表的一部分。如果你是一个有经验的Python程序员,尽管你可能已经知道一些,但你仍能发现一些你不知道的。如果你是一个正在学习Python的C、C++或Java程序员,或者刚开始学习编程,那么你会像我一样发现它们中的很多非常有用。

每个窍门或语言特性只能通过实例来验证,无需过多解释。虽然我已尽力使例子清晰,但它们中的一些仍会看起来有些复杂,这取决于你的熟悉程度。所以如果看过例子后还不清楚的话,标题能够提供足够的信息让你通过Google获取详细的内容。

二、Python的语言特征

列表按难度排序,常用的语言特征和技巧放在前面。

1. 分拆

>>> a, b, c = 1, 2, 3

>>> a, b, c

(1, 2, 3)

>>> a, b, c = [1, 2, 3]

>>> a, b, c

(1, 2, 3)

>>> a, b, c = (2 * i + 1 for i in range(3))

>>> a, b, c

(1, 3, 5)

>>> a, (b, c), d = [1, (2, 3), 4]

>>> a

1

>>> b

2

>>> c

3

>>> d

4

2.交换变量分拆

>>> a, b = 1, 2

>>> a, b = b, a

>>> a, b

(2, 1)

3.拓展分拆 (Python 3下适用)

>>> a, *b, c = [1, 2, 3, 4, 5]

>>> a

1

>>> b

[2, 3, 4]

>>> c

5

4.负索引

>>> a = [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10]

>>> a[-1]

10

>>> a[-3]

8

5.列表切片 (a[start:end])

>>> a = [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10]

>>> a[2:8]

[2, 3, 4, 5, 6, 7]

6.使用负索引的列表切片

>>> a = [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10]

>>> a[-4:-2]

[7, 8]

7.带步进值的列表切片 (a[start:end:step])

>>> a = [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10]

>>> a[::2]

[0, 2, 4, 6, 8, 10]

>>> a[::3]

[0, 3, 6, 9]

>>> a[2:8:2]

[2, 4, 6]

8.负步进值得列表切片

>>> a = [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10]

>>> a[::-1]

[10, 9, 8, 7, 6, 5, 4, 3, 2, 1, 0]

>>> a[::-2]

[10, 8, 6, 4, 2, 0]

9.列表切片赋值

>>> a = [1, 2, 3, 4, 5]

>>> a[2:3] = [0, 0]

>>> a

[1, 2, 0, 0, 4, 5]

>>> a[1:1] = [8, 9]

>>> a

[1, 8, 9, 2, 0, 0, 4, 5]

>>> a[1:-1] = []

>>> a

[1, 5]

10.命名切片 (slice(start, end, step))

>>> a = [0, 1, 2, 3, 4, 5]

>>> LASTTHREE = slice(-3, None)

>>> LASTTHREE

slice(-3, None, None)

>>> a[LASTTHREE]

[3, 4, 5]

11.zip打包解包列表和倍数

>>> a = [1, 2, 3]

>>> b = ['a', 'b', 'c']

>>> z = zip(a, b)

>>> z

[(1, 'a'), (2, 'b'), (3, 'c')]

>>> zip(*z)

[(1, 2, 3), ('a', 'b', 'c')]

12.使用zip合并相邻的列表项

>>> a = [1, 2, 3, 4, 5, 6]

>>> zip(*([iter(a)] * 2))

[(1, 2), (3, 4), (5, 6)]

>>> group_adjacent = lambda a, k: zip(*([iter(a)] * k))

>>> group_adjacent(a, 3)

[(1, 2, 3), (4, 5, 6)]

>>> group_adjacent(a, 2)

[(1, 2), (3, 4), (5, 6)]

>>> group_adjacent(a, 1)

[(1,), (2,), (3,), (4,), (5,), (6,)]

>>> zip(a[::2], a[1::2])

[(1, 2), (3, 4), (5, 6)]

>>> zip(a[::3], a[1::3], a[2::3])

[(1, 2, 3), (4, 5, 6)]

>>> group_adjacent = lambda a, k: zip(*(a[i::k] for i in range(k)))

>>> group_adjacent(a, 3)

[(1, 2, 3), (4, 5, 6)]

>>> group_adjacent(a, 2)

[(1, 2), (3, 4), (5, 6)]

>>> group_adjacent(a, 1)

[(1,), (2,), (3,), (4,), (5,), (6,)]

13.使用zip和iterators生成滑动窗口 (n -grams)

>>> from itertools import islice

>>> def n_grams(a, n):

... z = (islice(a, i, None) for i in range(n))

... return zip(*z)

...

>>> a = [1, 2, 3, 4, 5, 6]

>>> n_grams(a, 3)

[(1, 2, 3), (2, 3, 4), (3, 4, 5), (4, 5, 6)]

>>> n_grams(a, 2)

[(1, 2), (2, 3), (3, 4), (4, 5), (5, 6)]

>>> n_grams(a, 4)

[(1, 2, 3, 4), (2, 3, 4, 5), (3, 4, 5, 6)]

14.使用zip反转字典

>>> m = {'a': 1, 'b': 2, 'c': 3, 'd': 4}

>>> m.items()

[('a', 1), ('c', 3), ('b', 2), ('d', 4)]

>>> zip(m.values(), m.keys())

[(1, 'a'), (3, 'c'), (2, 'b'), (4, 'd')]

>>> mi = dict(zip(m.values(), m.keys()))

>>> mi

{1: 'a', 2: 'b', 3: 'c', 4: 'd'}

15.摊平列表:

>>> a = [[1, 2], [3, 4], [5, 6]]

>>> list(itertools.chain.from_iterable(a))

[1, 2, 3, 4, 5, 6]

>>> sum(a, [])

[1, 2, 3, 4, 5, 6]

>>> [x for l in a for x in l]

[1, 2, 3, 4, 5, 6]

>>> a = [[[1, 2], [3, 4]], [[5, 6], [7, 8]]]

>>> [x for l1 in a for l2 in l1 for x in l2]

[1, 2, 3, 4, 5, 6, 7, 8]

>>> a = [1, 2, [3, 4], [[5, 6], [7, 8]]]

>>> flatten = lambda x: [y for l in x for y in flatten(l)] if type(x) is list else [x]

>>> flatten(a)

[1, 2, 3, 4, 5, 6, 7, 8]

注意: 根据Python的文档,itertools.chain.from_iterable是首选。

16.生成器表达式

>>> g = (x ** 2 for x in xrange(10))

>>> next(g)

0

>>> next(g)

1

>>> next(g)

4

>>> next(g)

9

>>> sum(x ** 3 for x in xrange(10))

2025

>>> sum(x ** 3 for x in xrange(10) if x % 3 == 1)

408

17.迭代字典

>>> m = {x: x ** 2 for x in range(5)}

>>> m

{0: 0, 1: 1, 2: 4, 3: 9, 4: 16}

>>> m = {x: 'A' + str(x) for x in range(10)}

>>> m

{0: 'A0', 1: 'A1', 2: 'A2', 3: 'A3', 4: 'A4', 5: 'A5', 6: 'A6', 7: 'A7', 8: 'A8', 9: 'A9'}

18.通过迭代字典反转字典

>>> m = {'a': 1, 'b': 2, 'c': 3, 'd': 4}

>>> m

{'d': 4, 'a': 1, 'b': 2, 'c': 3}

>>> {v: k for k, v in m.items()}

{1: 'a', 2: 'b', 3: 'c', 4: 'd'}

19.命名序列 (collections.namedtuple)

>>> Point = collections.namedtuple('Point', ['x', 'y'])

>>> p = Point(x=1.0, y=2.0)

>>> p

Point(x=1.0, y=2.0)

>>> p.x

1.0

>>> p.y

2.0

20.命名列表的继承:

>>> class Point(collections.namedtuple('PointBase', ['x', 'y'])):

... __slots__ = ()

... def __add__(self, other):

... return Point(x=self.x + other.x, y=self.y + other.y)

...

>>> p = Point(x=1.0, y=2.0)

>>> q = Point(x=2.0, y=3.0)

>>> p + q

Point(x=3.0, y=5.0)

21.集合及集合操作

>>> A = {1, 2, 3, 3}

>>> A

set([1, 2, 3])

>>> B = {3, 4, 5, 6, 7}

>>> B

set([3, 4, 5, 6, 7])

>>> A | B

set([1, 2, 3, 4, 5, 6, 7])

>>> A & B

set([3])

>>> A - B

set([1, 2])

>>> B - A

set([4, 5, 6, 7])

>>> A ^ B

set([1, 2, 4, 5, 6, 7])

>>> (A ^ B) == ((A - B) | (B - A))

True

22.多重集及其操作 (collections.Counter)

>>> A = collections.Counter([1, 2, 2])

>>> B = collections.Counter([2, 2, 3])

>>> A

Counter({2: 2, 1: 1})

>>> B

Counter({2: 2, 3: 1})

>>> A | B

Counter({2: 2, 1: 1, 3: 1})

>>> A & B

Counter({2: 2})

>>> A + B

Counter({2: 4, 1: 1, 3: 1})

>>> A - B

Counter({1: 1})

>>> B - A

Counter({3: 1})

23.迭代中最常见的元素 (collections.Counter)

>>> A = collections.Counter([1, 1, 2, 2, 3, 3, 3, 3, 4, 5, 6, 7])

>>> A

Counter({3: 4, 1: 2, 2: 2, 4: 1, 5: 1, 6: 1, 7: 1})

>>> A.most_common(1)

[(3, 4)]

>>> A.most_common(3)

[(3, 4), (1, 2), (2, 2)]

24.双端队列 (collections.deque)

>>> Q = collections.deque()

>>> Q.append(1)

>>> Q.appendleft(2)

>>> Q.extend([3, 4])

>>> Q.extendleft([5, 6])

>>> Q

deque([6, 5, 2, 1, 3, 4])

>>> Q.pop()

4

>>> Q.popleft()

6

>>> Q

deque([5, 2, 1, 3])

>>> Q.rotate(3)

>>> Q

deque([2, 1, 3, 5])

>>> Q.rotate(-3)

>>> Q

deque([5, 2, 1, 3])

25.有最大长度的双端队列 (collections.deque)

>>> last_three = collections.deque(maxlen=3)

>>> for i in xrange(10):

... last_three.append(i)

... print ', '.join(str(x) for x in last_three)

...

0

0, 1

0, 1, 2

1, 2, 3

2, 3, 4

3, 4, 5

4, 5, 6

5, 6, 7

6, 7, 8

7, 8, 9

26.字典排序 (collections.OrderedDict)

>>> m = dict((str(x), x) for x in range(10))

>>> print ', '.join(m.keys())

1, 0, 3, 2, 5, 4, 7, 6, 9, 8

>>> m = collections.OrderedDict((str(x), x) for x in range(10))

>>> print ', '.join(m.keys())

0, 1, 2, 3, 4, 5, 6, 7, 8, 9

>>> m = collections.OrderedDict((str(x), x) for x in range(10, 0, -1))

>>> print ', '.join(m.keys())

10, 9, 8, 7, 6, 5, 4, 3, 2, 1

27.缺省字典 (collections.defaultdict)

>>> m = dict()

>>> m['a']

Traceback (most recent call last):

File "", line 1, in

KeyError: 'a'

>>>

>>> m = collections.defaultdict(int)

>>> m['a']

0

>>> m['b']

0

>>> m = collections.defaultdict(str)

>>> m['a']

''

>>> m['b'] += 'a'

>>> m['b']

'a'

>>> m = collections.defaultdict(lambda: '[default value]')

>>> m['a']

'[default value]'

>>> m['b']

'[default value]'

28. 用缺省字典表示简单的树

>>> import json

>>> tree = lambda: collections.defaultdict(tree)

>>> root = tree()

>>> root['menu']['id'] = 'file'

>>> root['menu']['value'] = 'File'

>>> root['menu']['menuitems']['new']['value'] = 'New'

>>> root['menu']['menuitems']['new']['onclick'] = 'new();'

>>> root['menu']['menuitems']['open']['value'] = 'Open'

>>> root['menu']['menuitems']['open']['onclick'] = 'open();'

>>> root['menu']['menuitems']['close']['value'] = 'Close'

>>> root['menu']['menuitems']['close']['onclick'] = 'close();'

>>> print json.dumps(root, sort_keys=True, indent=4, separators=(',', ': '))

{

"menu": {

"id": "file",

"menuitems": {

"close": {

"onclick": "close();",

"value": "Close"

},

"new": {

"onclick": "new();",

"value": "New"

},

"open": {

"onclick": "open();",

"value": "Open"

}

},

"value": "File"

}

}

(到https://gist.github.com/hrldcpr/2012250查看详情)

29.映射对象到唯一的序列数 (collections.defaultdict)

>>> import itertools, collections

>>> value_to_numeric_map = collections.defaultdict(itertools.count().next)

>>> value_to_numeric_map['a']

0

>>> value_to_numeric_map['b']

1

>>> value_to_numeric_map['c']

2

>>> value_to_numeric_map['a']

0

>>> value_to_numeric_map['b']

1

30.最大最小元素 (heapq.nlargest和heapq.nsmallest)

>>> a = [random.randint(0, 100) for __ in xrange(100)]

>>> heapq.nsmallest(5, a)

[3, 3, 5, 6, 8]

>>> heapq.nlargest(5, a)

[100, 100, 99, 98, 98]

31.笛卡尔乘积 (itertools.product)

>>> for p in itertools.product([1, 2, 3], [4, 5]):

(1, 4)

(1, 5)

(2, 4)

(2, 5)

(3, 4)

(3, 5)

>>> for p in itertools.product([0, 1], repeat=4):

... print ''.join(str(x) for x in p)

...

0000

0001

0010

0011

0100

0101

0110

0111

1000

1001

1010

1011

1100

1101

1110

1111

32.组合的组合和置换 (itertools.combinations 和 itertools.combinations_with_replacement)

>>> for c in itertools.combinations([1, 2, 3, 4, 5], 3):

... print ''.join(str(x) for x in c)

...

123

124

125

134

135

145

234

235

245

345

>>> for c in itertools.combinations_with_replacement([1, 2, 3], 2):

... print ''.join(str(x) for x in c)

...

11

12

13

22

23

33

33.排序 (itertools.permutations)

>>> for p in itertools.permutations([1, 2, 3, 4]):

... print ''.join(str(x) for x in p)

...

1234

1243

1324

1342

1423

1432

2134

2143

2314

2341

2413

2431

3124

3142

3214

3241

3412

3421

4123

4132

4213

4231

4312

4321

34.链接的迭代 (itertools.chain)

>>> a = [1, 2, 3, 4]

>>> for p in itertools.chain(itertools.combinations(a, 2), itertools.combinations(a, 3)):

... print p

...

(1, 2)

(1, 3)

(1, 4)

(2, 3)

(2, 4)

(3, 4)

(1, 2, 3)

(1, 2, 4)

(1, 3, 4)

(2, 3, 4)

>>> for subset in itertools.chain.from_iterable(itertools.combinations(a, n) for n in range(len(a) + 1))

... print subset

...

()

(1,)

(2,)

(3,)

(4,)

(1, 2)

(1, 3)

(1, 4)

(2, 3)

(2, 4)

(3, 4)

(1, 2, 3)

(1, 2, 4)

(1, 3, 4)

(2, 3, 4)

(1, 2, 3, 4)

35.按给定值分组行 (itertools.groupby)

>>> from operator import itemgetter

>>> import itertools

>>> with open('contactlenses.csv', 'r') as infile:

... data = [line.strip().split(',') for line in infile]

...

>>> data = data[1:]

>>> def print_data(rows):

... print '\n'.join('\t'.join('{: <16}'.format(s) for s in row) for row in rows)

...

>>> print_data(data)

young myope no reduced none

young myope no normal soft

young myope yes reduced none

young myope yes normal hard

young hypermetrope no reduced none

young hypermetrope no normal soft

young hypermetrope yes reduced none

young hypermetrope yes normal hard

pre-presbyopic myope no reduced none

pre-presbyopic myope no normal soft

pre-presbyopic myope yes reduced none

pre-presbyopic myope yes normal hard

pre-presbyopic hypermetrope no reduced none

pre-presbyopic hypermetrope no normal soft

pre-presbyopic hypermetrope yes reduced none

pre-presbyopic hypermetrope yes normal none

presbyopic myope no reduced none

presbyopic myope no normal none

presbyopic myope yes reduced none

presbyopic myope yes normal hard

presbyopic hypermetrope no reduced none

presbyopic hypermetrope no normal soft

presbyopic hypermetrope yes reduced none

presbyopic hypermetrope yes normal none

>>> data.sort(key=itemgetter(-1))

>>> for value, group in itertools.groupby(data, lambda r: r[-1]):

... print '-----------'

... print 'Group: ' + value

... print_data(group)

...

-----------

Group: hard

young myope yes normal hard

young hypermetrope yes normal hard

pre-presbyopic myope yes normal hard

presbyopic myope yes normal hard

-----------

Group: none

young myope no reduced none

young myope yes reduced none

young hypermetrope no reduced none

young hypermetrope yes reduced none

pre-presbyopic myope no reduced none

pre-presbyopic myope yes reduced none

pre-presbyopic hypermetrope no reduced none

pre-presbyopic hypermetrope yes reduced none

pre-presbyopic hypermetrope yes normal none

presbyopic myope no reduced none

presbyopic myope no normal none

presbyopic myope yes reduced none

presbyopic hypermetrope no reduced none

presbyopic hypermetrope yes reduced none

presbyopic hypermetrope yes normal none

-----------

Group: soft

young myope no normal soft

young hypermetrope no normal soft

pre-presbyopic myope no normal soft

pre-presbyopic hypermetrope no normal soft

presbyopic hypermetrope no normal

版权声明:本文为博主原创文章,遵循 CC 4.0 BY-SA 版权协议,转载请附上原文出处链接和本声明。
本文链接:https://blog.csdn.net/weixin_39569051/article/details/109945572

智能推荐

Linux查看登录用户日志_怎么记录linux设备 发声的登录和登出-程序员宅基地

文章浏览阅读8.6k次。一、Linux记录用户登录信息文件1  /var/run/utmp----记录当前正在登录系统的用户信息;2  /var/log/wtmp----记录当前正在登录和历史登录系统的用户信息;3  /var/log/btmp:记录失败的登录尝试信息。二、命令用法1.命令last,lastb---show a listing of la_怎么记录linux设备 发声的登录和登出

第四章笔记:遍历--算法学中的万能钥匙-程序员宅基地

文章浏览阅读167次。摘要:1. 简介 2. 公园迷宫漫步 3. 无线迷宫与最短(不加权)路径问题 4. 强连通分量1. 简介在计算机科学裡,树的遍历(也称为树的搜索)是圖的遍歷的一种,指的是按照某种规则,不重复地访问某种樹的所有节点的过程。具体的访问操作可能是检查节点的值、更新节点的值等。不同的遍历方式,其访问节点的顺序是不一样的。两种著名的基本遍历策略:深度优先搜索(DFS) 和 广度优先搜索(B...

【案例分享】使用ActiveReports报表工具,在.NET MVC模式下动态创建报表_activereports.net 实现查询报表功能-程序员宅基地

文章浏览阅读591次。提起报表,大家会觉得即熟悉又陌生,好像常常在工作中使用,又似乎无法准确描述报表。今天我们来一起了解一下什么是报表,报表的结构、构成元素,以及为什么需要报表。什么是报表简单的说:报表就是通过表格、图表等形式来动态显示数据,并为使用者提供浏览、打印、导出和分析的功能,可以用公式表示为:报表 = 多样的布局 + 动态的数据 + 丰富的输出报表通常包含以下组成部分:报表首页:在报表的开..._activereports.net 实现查询报表功能

Ubuntu18.04 + GNOME xrdp + Docker + GUI_docker xrdp ubuntu-程序员宅基地

文章浏览阅读6.6k次。最近实验室需要用Cadence,这个软件的安装非常麻烦,每一次配置都要几个小时,因此打算把Cadence装进Docker。但是Cadence运行时需要GUI,要对Docker进行一些配置。我们实验室的服务器运行的是Ubuntu18.04,默认桌面GNOME,Cadence装进Centos的Docker。安装Ubuntu18.04服务器上安装Ubuntu18.04的教程非常多,在此不赘述了安装..._docker xrdp ubuntu

iOS AVFoundation实现相机功能_ios avcapturestillimageoutput 兼容性 ios17 崩溃-程序员宅基地

文章浏览阅读1.8k次,点赞2次,收藏2次。首先导入头文件#import 导入头文件后创建几个相机必须实现的对象 /** * AVCaptureSession对象来执行输入设备和输出设备之间的数据传递 */ @property (nonatomic, strong) AVCaptureSession* session; /** * 输入设备 */_ios avcapturestillimageoutput 兼容性 ios17 崩溃

Oracle动态性能视图--v$sysstat_oracle v$sysstat视图-程序员宅基地

文章浏览阅读982次。按照OracleDocument中的描述,v$sysstat存储自数据库实例运行那刻起就开始累计全实例(instance-wide)的资源使用情况。 类似于v$sesstat,该视图存储下列的统计信息:1>.事件发生次数的统计(如:user commits)2>._oracle v$sysstat视图

随便推点

Vue router报错:NavigationDuplicated {_name: "NavigationDuplicated", name: "NavigationDuplicated"}的解决方法_navigationduplicated {_name: 'navigationduplicated-程序员宅基地

文章浏览阅读7.6k次,点赞2次,收藏9次。我最近做SPA项目开发动态树的时候一直遇到以下错误:当我点击文章管理需要跳转路径时一直报NavigationDuplicated {_name: “NavigationDuplicated”, name: “NavigationDuplicated”}这个错误但是当我点击文章管理后,路径跳转却是成功的<template> <div> 文章管理页面 <..._navigationduplicated {_name: 'navigationduplicated', name: 'navigationduplic

Webrtc回声消除模式(Aecm)屏蔽舒适噪音(CNG)_webrtc aecm 杂音-程序员宅基地

文章浏览阅读3.9k次。版本VoiceEngine 4.1.0舒适噪音生成(comfort noise generator,CNG)是一个在通话过程中出现短暂静音时用来为电话通信产生背景噪声的程序。#if defined(WEBRTC_ANDROID) || defined(WEBRTC_IOS)static const EcModes kDefaultEcMode = kEcAecm;#elsestati..._webrtc aecm 杂音

医学成像原理与图像处理一:概论_医学成像与图像处理技术知识点总结-程序员宅基地

文章浏览阅读6.3k次,点赞9次,收藏19次。医学成像原理与图像处理一:概论引言:本系列博客为医学成像原理与图像处理重要笔记,由于是手写,在此通过扫描录入以图片的形式和电子版增补内容将其进行组织和共享。前半部分内容为图像处理基础内容,包括图像的灰度级处理、空间域滤波、频率域滤波、图像增强和分割等;后半部分内容为医学影象技术,包括常规胶片X光机、CR、DR、CT、DSA等X射线摄影技术、超声成像技术、磁共振成像(MRI)技术等。本篇主要内容是概论。_医学成像与图像处理技术知识点总结

notepad++ v8.5.3 安装插件,安装失败怎么处理?下载进度为0怎么处理?_nodepa++-程序员宅基地

文章浏览阅读591次,点赞13次,收藏10次。notepad++ v8.5.3 安装插件,下载进度为0_nodepa++

hive某个字段中包括\n(和换行符冲突)_hive sql \n-程序员宅基地

文章浏览阅读2.1w次。用spark执行SQL保存到Hive中: hiveContext.sql(&quot;insert overwrite table test select * from aaa&quot;)执行完成,没报错,但是核对结果的时候,发现有几笔数据超出指定范围(实际只包含100/200)最终排查到是ret_pay_remark 字段包含换行符,解决方案:执行SQL中把特殊字符替换掉regexp_replace(..._hive sql \n

印象笔记05:如何打造更美的印象笔记超级笔记_好的印象笔记怎么做的-程序员宅基地

文章浏览阅读520次,点赞10次,收藏8次。印象笔记05:如何打造更美的印象笔记超级笔记本文介绍印象笔记的具体使用,如何打造更美更实用的笔记。首先想要笔记更加好看和实用,我认为要使用超级笔记。所谓超级笔记就是具有很多便捷功能的笔记。_好的印象笔记怎么做的

推荐文章

热门文章

相关标签