对UDP校验和的理解_udp 数据包 校验和 checksum=0-程序员宅基地

技术标签:   

很多文章对ip首部检验和的计算介绍得很简略,在理解上常常会比较困难。这篇文章是我自己的一些理解。或许也有不正确的地方,希望大家指正。

这个问题一直困绕了我很长时间,今天终于理解了。


我们可以通过spynet sniffer抓包软件,抓取一个ip数据包进行分析研究。
下面我以本机抓到的一个完整的ip首部为例(红色字体表示):

0000: 00 e0 0f 7d 1e ba 00 13 8f 54 3b 70 08 00 45 00
0010: 00 2e be 55 00 00 7a 11 51 ac de b7 7e e3 c0 a8
0020: 12 7a

45 00 00 2e----4表示ip版本号为ip第4版;5表示首部长度为5个32 bit字长,即为20字节;00 2e表示ip总长度为46字节,其中ip数据部分为
26字节。
be 55 00 00----be 55表示标识符;00 00表示3 bit标志及13 bit片偏移量;
7a 11 51 ac----7a表示ttl值为122;11表示协议号为17的udp协议;51 ac表示16 bit首部检验和值;
de b7 7e e3----表示32 bit 源ip地址为222.183.126.227
c0 a8 12 7a----表示32 bit 目的ip地址为192.168.18.122




检验和计算:
首先,把检验和字段置为0。
45 00 00 2e
be 55 00 00
7a 11 00 00<----检验和置为0
de b7 7e e3
c0 a8 12 7a
其次,对整个首部中的每个16 bit进行二进制反码求和,求和值为3ae50,然后3+ae50=ae53(这是根据源代码中算法 cksum = (cksum
>> 16) + (cksum & 0xffff) 进行的 )

最后,ae53+51ac=ffff。因此判断ip首部在传输过程中没有发生任何差错。

"二进制反码求和" 等价于 "二进制求和再取反"
从源代码看,很关键的一点是二进制求出的和如果大于16位时所做的操作,用和值中高16位加上低16位的值作为最终的和值,然后再做取反运算.

 

The IP Header Checksum is computed on the header fields only.
Before starting the calculation, the checksum fields (octets 11 and 12)
are made equal to zero.

In the example code,
u16 buff[] is an array containing all octets in the header with octets 11 and 12

equal to zero.
u16 len_ip_header is the length (number of octets) of the header.


/*
**************************************************************************
Function: ip_sum_calc
Description: Calculate the 16 bit IP sum.
***************************************************************************
*/
typedef unsigned short u16;
typedef unsigned long u32;

u16 ip_sum_calc(u16 len_ip_header, u16 buff[])
{
 u16 word16;
 u32 sum=0;
 u16 i;
         
 // make 16 bit words out of every two adjacent 8 bit words in the packet
 // and add them up
 for (i=0;i<len_ip_header;i=i+2){
        word16 =((buff[i]<<8)&0xFF00)+(buff[i+1]&0xFF);
        sum = sum + (u32) word16;
 }


 // take only 16 bits out of the 32 bit sum and add up the carries
 while (sum>>16)
        sum = (sum & 0xFFFF)+(sum >> 16);

// one's complement the result
 sum = ~sum;

return ((u16) sum);
}

又一种写法

//计算校验和(直接相加,校验和需取反)

ip_buf->i.checksum=0;

ip_buf->i.checksum=~csum((WORD *)&ip_buf->i,sizeof(ipheader));

//ipheader是字节为单位的
WORD csum(void *dp, WORD count)
{
          register DWORD total=0;
          register WORD n, *p, carries;

          n = count / 2;
          p = (WORD *)dp;
          while (n--)
              total += *p++; //先加total = *p +total ;再P++;
          if (count & 1) //如果为单数,就是上面所count/2除不尽,
 {
 n=*(BYTE *)p;
              total +=n<<8;//n变成16位,在后面补0,再相加
 }
          while ((carries=(WORD)(total>>16))!=0)
              total = (total & 0xffff) + carries;
          return((WORD)total);
}

可以这样子理解:1110101,反码 0001010,两个相加的话,为1111111.

//

关于IP分组头的校验和(checksum)算法,简单的说就是16位累加的反码运算,但具体是如何实现的,许多资料不得其详。TCP和UDP数据报头也使用相同的校验算法,但参与运算的数据与IP分组头不一样。此外,IPv6对校验和的运算与IPv4又有些许不同。因此有必要对IP分组的校验和算法作全面的解析。

 

IPv4分组头的结构如下所示:

      0                      1                      2                      3      
      0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      |Version|  IHL  |Type of Service|             Total Length            |
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      |            Identification           |Flags|         Fragment Offset       |
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      |  Time to Live |       Protocol      |           Header Checksum           |
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      |                          Source Address                             |
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      |                       Destination Address                           |
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      |                       Options                       |       Padding       |
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

 

其中的"Header Checksum"域即为头校验和部分。当要计算IPv4分组头校验和时,发送方先将其置为全0,然后按16位逐一累加至IPv4分组头结束,累加和保存于一个32位的数值中。如果总的字节数为奇数,则最后一个字节单独相加。累加完毕将结果中高16位再加到低16位上,重复这一过程直到高16位为全0。下面用实际截获的IPv4分组来演示整个计算过程:

 

0x0000: 00 60 47 41 11 c9 00 09 6b 7a 5b 3b 08 00 45 00
0x0010: 00 1c 74 68 00 00 80 11 59 8f c0 a8 64 01 ab 46
0x0020: 9c e9 0f 3a 04 05 00 08 7f c5 00 00 00 00 00 00
0x0030: 00 00 00 00 00 00 00 00 00 00 00 00

 

在上面的16进制采样中,起始为Ethernet帧的开头。IPv4分组头从地址偏移量0x000e开始,第一个字节为0x45,最后一个字节为0xe9。根据以上的算法描述,我们可以作如下计算:

 

(1) 0x4500 + 0x001c + 0x7468 + 0x0000 + 0x8011 +
       0x0000 + 0xc0a8 + 0x6401 + 0xab46 + 0x9ce9 = 0x3a66d
(2) 0xa66d + 0x3 = 0xa670
(3) 0xffff - 0xa670 = 0x598f

 

注意在第一步我们用0x0000设置头校验和部分。可以看出这一分组头的校验和与收到的值完全一致。以上的过程仅用于发送方计算初始的校验和,实际中对于中间转发的路由器和最终接收方,可将收到的IPv4分组头校验和部分直接按同样算法相加,如果结果为0xffff,则校验正确。

 

如何编写产生IPv4头校验和的C程序?RFC1071(Computing the Internet Checksum)给出了一个参考实现 :

 

{

           /* Compute Internet Checksum for "count" bytes

            *         beginning at location "addr".

            */

       register long sum = 0;

 

        while( count > 1 )  {

           /*  This is the inner loop */

               sum += * (unsigned short) addr++;

               count -= 2;

       }

 

           /*  Add left-over byte, if any */

       if( count > 0 )

               sum += * (unsigned char *) addr;

 

           /*  Fold 32-bit sum to 16 bits */

       while (sum>>16)

           sum = (sum & 0xffff) + (sum >> 16);

 

       checksum = ~sum;

   }

 

对于TCP和UDP的数据报,其头部也包含16位的校验和,校验算法与IPv4分组头完全一致,但参与校验的数据不同。这时校验和不仅包含整个TCP/UDP数据报,还覆盖了一个虚头部。虚头部的定义如下:

 

                     0         7 8        15 16       23 24       31
                    +--------+--------+--------+--------+
                    |             source address              |
                       +--------+--------+--------+--------+
                    |           destination address           |
                    +--------+--------+--------+--------+
                    |  zero  |protocol| TCP/UDP length  |
                    +--------+--------+--------+--------+

 

其中有IP源地址,IP目的地址,协议号(TCP:6/UDP:17)及TCP或UDP数据报的总长度(头部+数据)。将虚头部加入校验的目的,是为了再次核对数据报是否到达正确的目的地,并防止IP欺骗攻击(spoofing)。

 

///

UDP校验方法:
UDP的CHECKSUM算法与[wiki]IP[/wiki]包的HEADER CHECKSUM的计算方法基本一样,只是取样数据不同。
UDP中,参与计算CHEKCSUM的数据包括三部分: 亚头部+UDP头部+数据部分
亚头部包括:2byte源IP地址+2byte目的IP地址+0x00+1byte[wiki]协议[/wiki]+2byte的UDP长度
UDP包头:2byte源端口+2byte目的端口+2byteUDP包长+0x0000(checksum)
数据部分

计算方法,以2字节为一个单位,将其顺序相加,就会产生2个字节的SUM,如果超过2字节,则将高位的值再加回低位,然后取补,得到的就是UDP的checksum

版权声明:本文为博主原创文章,遵循 CC 4.0 BY-SA 版权协议,转载请附上原文出处链接和本声明。
本文链接:https://blog.csdn.net/weiweiliulu/article/details/17923043

智能推荐

JWT(Json Web Token)实现无状态登录_无状态token登录-程序员宅基地

文章浏览阅读685次。1.1.什么是有状态?有状态服务,即服务端需要记录每次会话的客户端信息,从而识别客户端身份,根据用户身份进行请求的处理,典型的设计如tomcat中的session。例如登录:用户登录后,我们把登录者的信息保存在服务端session中,并且给用户一个cookie值,记录对应的session。然后下次请求,用户携带cookie值来,我们就能识别到对应session,从而找到用户的信息。缺点是什么?服务端保存大量数据,增加服务端压力 服务端保存用户状态,无法进行水平扩展 客户端请求依赖服务.._无状态token登录

SDUT OJ逆置正整数-程序员宅基地

文章浏览阅读293次。SDUT OnlineJudge#include<iostream>using namespace std;int main(){int a,b,c,d;cin>>a;b=a%10;c=a/10%10;d=a/100%10;int key[3];key[0]=b;key[1]=c;key[2]=d;for(int i = 0;i<3;i++){ if(key[i]!=0) { cout<<key[i.

年终奖盲区_年终奖盲区表-程序员宅基地

文章浏览阅读2.2k次。年终奖采用的平均每月的收入来评定缴税级数的,速算扣除数也按照月份计算出来,但是最终减去的也是一个月的速算扣除数。为什么这么做呢,这样的收的税更多啊,年终也是一个月的收入,凭什么减去12*速算扣除数了?这个霸道(不要脸)的说法,我们只能合理避免的这些跨级的区域了,那具体是那些区域呢?可以参考下面的表格:年终奖一列标红的一对便是盲区的上下线,发放年终奖的数额一定一定要避免这个区域,不然公司多花了钱..._年终奖盲区表

matlab 提取struct结构体中某个字段所有变量的值_matlab读取struct类型数据中的值-程序员宅基地

文章浏览阅读7.5k次,点赞5次,收藏19次。matlab结构体struct字段变量值提取_matlab读取struct类型数据中的值

Android fragment的用法_android reader fragment-程序员宅基地

文章浏览阅读4.8k次。1,什么情况下使用fragment通常用来作为一个activity的用户界面的一部分例如, 一个新闻应用可以在屏幕左侧使用一个fragment来展示一个文章的列表,然后在屏幕右侧使用另一个fragment来展示一篇文章 – 2个fragment并排显示在相同的一个activity中,并且每一个fragment拥有它自己的一套生命周期回调方法,并且处理它们自己的用户输_android reader fragment

FFT of waveIn audio signals-程序员宅基地

文章浏览阅读2.8k次。FFT of waveIn audio signalsBy Aqiruse An article on using the Fast Fourier Transform on audio signals. IntroductionThe Fast Fourier Transform (FFT) allows users to view the spectrum content of _fft of wavein audio signals

随便推点

Awesome Mac:收集的非常全面好用的Mac应用程序、软件以及工具_awesomemac-程序员宅基地

文章浏览阅读5.9k次。https://jaywcjlove.github.io/awesome-mac/ 这个仓库主要是收集非常好用的Mac应用程序、软件以及工具,主要面向开发者和设计师。有这个想法是因为我最近发了一篇较为火爆的涨粉儿微信公众号文章《工具武装的前端开发工程师》,于是建了这么一个仓库,持续更新作为补充,搜集更多好用的软件工具。请Star、Pull Request或者使劲搓它 issu_awesomemac

java前端技术---jquery基础详解_简介java中jquery技术-程序员宅基地

文章浏览阅读616次。一.jquery简介 jQuery是一个快速的,简洁的javaScript库,使用户能更方便地处理HTML documents、events、实现动画效果,并且方便地为网站提供AJAX交互 jQuery 的功能概括1、html 的元素选取2、html的元素操作3、html dom遍历和修改4、js特效和动画效果5、css操作6、html事件操作7、ajax_简介java中jquery技术

Ant Design Table换滚动条的样式_ant design ::-webkit-scrollbar-corner-程序员宅基地

文章浏览阅读1.6w次,点赞5次,收藏19次。我修改的是表格的固定列滚动而产生的滚动条引用Table的组件的css文件中加入下面的样式:.ant-table-body{ &amp;amp;::-webkit-scrollbar { height: 5px; } &amp;amp;::-webkit-scrollbar-thumb { border-radius: 5px; -webkit-box..._ant design ::-webkit-scrollbar-corner

javaWeb毕设分享 健身俱乐部会员管理系统【源码+论文】-程序员宅基地

文章浏览阅读269次。基于JSP的健身俱乐部会员管理系统项目分享:见文末!

论文开题报告怎么写?_开题报告研究难点-程序员宅基地

文章浏览阅读1.8k次,点赞2次,收藏15次。同学们,是不是又到了一年一度写开题报告的时候呀?是不是还在为不知道论文的开题报告怎么写而苦恼?Take it easy!我带着倾尽我所有开题报告写作经验总结出来的最强保姆级开题报告解说来啦,一定让你脱胎换骨,顺利拿下开题报告这个高塔,你确定还不赶快点赞收藏学起来吗?_开题报告研究难点

原生JS 与 VUE获取父级、子级、兄弟节点的方法 及一些DOM对象的获取_获取子节点的路径 vue-程序员宅基地

文章浏览阅读6k次,点赞4次,收藏17次。原生先获取对象var a = document.getElementById("dom");vue先添加ref <div class="" ref="divBox">获取对象let a = this.$refs.divBox获取父、子、兄弟节点方法var b = a.childNodes; 获取a的全部子节点 var c = a.parentNode; 获取a的父节点var d = a.nextSbiling; 获取a的下一个兄弟节点 var e = a.previ_获取子节点的路径 vue