STM32利用硬件I2C读取MPU6050陀螺仪数据-程序员宅基地

技术标签: stm32  STM32  嵌入式硬件  单片机  

有了前面的基本配置,这节读取MPU6050的数据还算是简单,主要就是初始化时给MPU6050一些配置,取消睡眠模式,MPU6050开机是默认睡眠模式的,读写无效,所以上来就要先更改配置:

MPU6050寄存器初始化,需要对照MPU6050手册的寄存器描述配置,此处仅配置了部分重要的寄存器:

电源管理寄存器1,取消睡眠模式,选择时钟源为X轴陀螺仪

电源管理寄存器2,保持默认值0,所有轴均不待机

采样率分频寄存器,配置采样率

配置寄存器,配置DLPF

陀螺仪配置寄存器,选择满量程为±2000°/s

加速度计配置寄存器,选择满量程为±16g

配置完MPU6050的各个功能寄存器,剩下的就是读取陀螺仪的数据了。

 函    数:MPU6050获取数据
 参    数:AccX AccY AccZ 加速度计X、Y、Z轴的数据,使用输出参数的形式返回,范     围:-32768~32767

参    数:GyroX GyroY GyroZ 陀螺仪X、Y、Z轴的数据,使用输出参数的形式返回,范           围:-32768~32767

读取加速度计X轴的高8位数据

读取加速度计X轴的低8位数据

数据拼接,通过输出参数返回

MUP6050.c文件:

#include "stm32f10x.h"                  // Device header
#include "MPU6050_Reg.h"

#define MPU6050_ADDRESS		0xD0		//MPU6050的I2C从机地址

/**
  * 函    数:MPU6050等待事件
  * 参    数:同I2C_CheckEvent
  * 返 回 值:无
  */
void MPU6050_WaitEvent(I2C_TypeDef* I2Cx, uint32_t I2C_EVENT)
{
	uint32_t Timeout;
	Timeout = 10000;									//给定超时计数时间
	while (I2C_CheckEvent(I2Cx, I2C_EVENT) != SUCCESS)	//循环等待指定事件
	{
		Timeout --;										//等待时,计数值自减
		if (Timeout == 0)								//自减到0后,等待超时
		{
			/*超时的错误处理代码,可以添加到此处*/
			break;										//跳出等待,不等了
		}
	}
}

/**
  * 函    数:MPU6050写寄存器
  * 参    数:RegAddress 寄存器地址,范围:参考MPU6050手册的寄存器描述
  * 参    数:Data 要写入寄存器的数据,范围:0x00~0xFF
  * 返 回 值:无
  */
void MPU6050_WriteReg(uint8_t RegAddress, uint8_t Data)
{
	I2C_GenerateSTART(I2C2, ENABLE);										//硬件I2C生成起始条件
	MPU6050_WaitEvent(I2C2, I2C_EVENT_MASTER_MODE_SELECT);					//等待EV5
	
	I2C_Send7bitAddress(I2C2, MPU6050_ADDRESS, I2C_Direction_Transmitter);	//硬件I2C发送从机地址,方向为发送
	MPU6050_WaitEvent(I2C2, I2C_EVENT_MASTER_TRANSMITTER_MODE_SELECTED);	//等待EV6
	
	I2C_SendData(I2C2, RegAddress);											//硬件I2C发送寄存器地址
	MPU6050_WaitEvent(I2C2, I2C_EVENT_MASTER_BYTE_TRANSMITTING);			//等待EV8
	
	I2C_SendData(I2C2, Data);												//硬件I2C发送数据
	MPU6050_WaitEvent(I2C2, I2C_EVENT_MASTER_BYTE_TRANSMITTED);				//等待EV8_2
	
	I2C_GenerateSTOP(I2C2, ENABLE);											//硬件I2C生成终止条件
}

/**
  * 函    数:MPU6050读寄存器
  * 参    数:RegAddress 寄存器地址,范围:参考MPU6050手册的寄存器描述
  * 返 回 值:读取寄存器的数据,范围:0x00~0xFF
  */
uint8_t MPU6050_ReadReg(uint8_t RegAddress)
{
	uint8_t Data;
	
	I2C_GenerateSTART(I2C2, ENABLE);										//硬件I2C生成起始条件
	MPU6050_WaitEvent(I2C2, I2C_EVENT_MASTER_MODE_SELECT);					//等待EV5
	
	I2C_Send7bitAddress(I2C2, MPU6050_ADDRESS, I2C_Direction_Transmitter);	//硬件I2C发送从机地址,方向为发送
	MPU6050_WaitEvent(I2C2, I2C_EVENT_MASTER_TRANSMITTER_MODE_SELECTED);	//等待EV6
	
	I2C_SendData(I2C2, RegAddress);											//硬件I2C发送寄存器地址
	MPU6050_WaitEvent(I2C2, I2C_EVENT_MASTER_BYTE_TRANSMITTED);				//等待EV8_2
	
	I2C_GenerateSTART(I2C2, ENABLE);										//硬件I2C生成重复起始条件
	MPU6050_WaitEvent(I2C2, I2C_EVENT_MASTER_MODE_SELECT);					//等待EV5
	
	I2C_Send7bitAddress(I2C2, MPU6050_ADDRESS, I2C_Direction_Receiver);		//硬件I2C发送从机地址,方向为接收
	MPU6050_WaitEvent(I2C2, I2C_EVENT_MASTER_RECEIVER_MODE_SELECTED);		//等待EV6
	
	I2C_AcknowledgeConfig(I2C2, DISABLE);									//在接收最后一个字节之前提前将应答失能
	I2C_GenerateSTOP(I2C2, ENABLE);											//在接收最后一个字节之前提前申请停止条件
	
	MPU6050_WaitEvent(I2C2, I2C_EVENT_MASTER_BYTE_RECEIVED);				//等待EV7
	Data = I2C_ReceiveData(I2C2);											//接收数据寄存器
	
	I2C_AcknowledgeConfig(I2C2, ENABLE);									//将应答恢复为使能,为了不影响后续可能产生的读取多字节操作
	
	return Data;
}

/**
  * 函    数:MPU6050初始化
  * 参    数:无
  * 返 回 值:无
  */
void MPU6050_Init(void)
{
	/*开启时钟*/
	RCC_APB1PeriphClockCmd(RCC_APB1Periph_I2C2, ENABLE);		//开启I2C2的时钟
	RCC_APB2PeriphClockCmd(RCC_APB2Periph_GPIOB, ENABLE);		//开启GPIOB的时钟
	
	/*GPIO初始化*/
	GPIO_InitTypeDef GPIO_InitStructure;
	GPIO_InitStructure.GPIO_Mode = GPIO_Mode_AF_OD;
	GPIO_InitStructure.GPIO_Pin = GPIO_Pin_10 | GPIO_Pin_11;
	GPIO_InitStructure.GPIO_Speed = GPIO_Speed_50MHz;
	GPIO_Init(GPIOB, &GPIO_InitStructure);					//将PB10和PB11引脚初始化为复用开漏输出
	
	/*I2C初始化*/
	I2C_InitTypeDef I2C_InitStructure;						//定义结构体变量
	I2C_InitStructure.I2C_Mode = I2C_Mode_I2C;				//模式,选择为I2C模式
	I2C_InitStructure.I2C_ClockSpeed = 50000;				//时钟速度,选择为50KHz
	I2C_InitStructure.I2C_DutyCycle = I2C_DutyCycle_2;		//时钟占空比,选择Tlow/Thigh = 2
	I2C_InitStructure.I2C_Ack = I2C_Ack_Enable;				//应答,选择使能
	I2C_InitStructure.I2C_AcknowledgedAddress = I2C_AcknowledgedAddress_7bit;	//应答地址,选择7位,从机模式下才有效
	I2C_InitStructure.I2C_OwnAddress1 = 0x00;				//自身地址,从机模式下才有效
	I2C_Init(I2C2, &I2C_InitStructure);						//将结构体变量交给I2C_Init,配置I2C2
	
	/*I2C使能*/
	I2C_Cmd(I2C2, ENABLE);									//使能I2C2,开始运行
	
	/*MPU6050寄存器初始化,需要对照MPU6050手册的寄存器描述配置,此处仅配置了部分重要的寄存器*/
	MPU6050_WriteReg(MPU6050_PWR_MGMT_1, 0x01);				//电源管理寄存器1,取消睡眠模式,选择时钟源为X轴陀螺仪
	MPU6050_WriteReg(MPU6050_PWR_MGMT_2, 0x00);				//电源管理寄存器2,保持默认值0,所有轴均不待机
	MPU6050_WriteReg(MPU6050_SMPLRT_DIV, 0x09);				//采样率分频寄存器,配置采样率
	MPU6050_WriteReg(MPU6050_CONFIG, 0x06);					//配置寄存器,配置DLPF
	MPU6050_WriteReg(MPU6050_GYRO_CONFIG, 0x18);			//陀螺仪配置寄存器,选择满量程为±2000°/s
	MPU6050_WriteReg(MPU6050_ACCEL_CONFIG, 0x18);			//加速度计配置寄存器,选择满量程为±16g
}


/**
  * 函    数:MPU6050获取ID号
  * 参    数:无
  * 返 回 值:MPU6050的ID号
  */
uint8_t MPU6050_GetID(void)
{
	return MPU6050_ReadReg(MPU6050_WHO_AM_I);		//返回WHO_AM_I寄存器的值
}

/**
  * 函    数:MPU6050获取数据
  * 参    数:AccX AccY AccZ 加速度计X、Y、Z轴的数据,使用输出参数的形式返回,范围:-32768~32767
  * 参    数:GyroX GyroY GyroZ 陀螺仪X、Y、Z轴的数据,使用输出参数的形式返回,范围:-32768~32767
  * 返 回 值:无
  */
void MPU6050_GetData(int16_t *AccX, int16_t *AccY, int16_t *AccZ, 
						int16_t *GyroX, int16_t *GyroY, int16_t *GyroZ, int16_t *Temp)
{
	uint8_t DataH, DataL;								//定义数据高8位和低8位的变量
	
	DataH = MPU6050_ReadReg(MPU6050_ACCEL_XOUT_H);		//读取加速度计X轴的高8位数据
	DataL = MPU6050_ReadReg(MPU6050_ACCEL_XOUT_L);		//读取加速度计X轴的低8位数据
	*AccX = (DataH << 8) | DataL;						//数据拼接,通过输出参数返回
	
	DataH = MPU6050_ReadReg(MPU6050_ACCEL_YOUT_H);		//读取加速度计Y轴的高8位数据
	DataL = MPU6050_ReadReg(MPU6050_ACCEL_YOUT_L);		//读取加速度计Y轴的低8位数据
	*AccY = (DataH << 8) | DataL;						//数据拼接,通过输出参数返回
	
	DataH = MPU6050_ReadReg(MPU6050_ACCEL_ZOUT_H);		//读取加速度计Z轴的高8位数据
	DataL = MPU6050_ReadReg(MPU6050_ACCEL_ZOUT_L);		//读取加速度计Z轴的低8位数据
	*AccZ = (DataH << 8) | DataL;						//数据拼接,通过输出参数返回
	
	DataH = MPU6050_ReadReg(MPU6050_GYRO_XOUT_H);		//读取陀螺仪X轴的高8位数据
	DataL = MPU6050_ReadReg(MPU6050_GYRO_XOUT_L);		//读取陀螺仪X轴的低8位数据
	*GyroX = (DataH << 8) | DataL;						//数据拼接,通过输出参数返回
	
	DataH = MPU6050_ReadReg(MPU6050_GYRO_YOUT_H);		//读取陀螺仪Y轴的高8位数据
	DataL = MPU6050_ReadReg(MPU6050_GYRO_YOUT_L);		//读取陀螺仪Y轴的低8位数据
	*GyroY = (DataH << 8) | DataL;						//数据拼接,通过输出参数返回
	
	DataH = MPU6050_ReadReg(MPU6050_GYRO_ZOUT_H);		//读取陀螺仪Z轴的高8位数据
	DataL = MPU6050_ReadReg(MPU6050_GYRO_ZOUT_L);		//读取陀螺仪Z轴的低8位数据
	*GyroZ = (DataH << 8) | DataL;						//数据拼接,通过输出参数返回
	
	DataH = MPU6050_ReadReg(MPU6050_TEMP_OUT_H);		//读取温度传感器的高8位数据
	DataL = MPU6050_ReadReg(MPU6050_TEMP_OUT_L);		//读取温度传感器的低8位数据
	*Temp = (DataH << 8) | DataL;						//数据拼接,通过输出参数返回
}

MPU6050.h文件:

#ifndef __MPU6050_H
#define __MPU6050_H

void MPU6050_WriteReg(uint8_t RegAddress, uint8_t Data);
uint8_t MPU6050_ReadReg(uint8_t RegAddress);

void MPU6050_Init(void);
uint8_t MPU6050_GetID(void);
void MPU6050_GetData(int16_t *AccX, int16_t *AccY, int16_t *AccZ, 
						int16_t *GyroX, int16_t *GyroY, int16_t *GyroZ, int16_t *Temp);

#endif

MPU6050_Reg.h文件:

#ifndef __MPU6050_REG_H
#define __MPU6050_REG_H

#define	MPU6050_SMPLRT_DIV		0x19
#define	MPU6050_CONFIG			0x1A
#define	MPU6050_GYRO_CONFIG		0x1B
#define	MPU6050_ACCEL_CONFIG	0x1C

#define	MPU6050_ACCEL_XOUT_H	0x3B
#define	MPU6050_ACCEL_XOUT_L	0x3C
#define	MPU6050_ACCEL_YOUT_H	0x3D
#define	MPU6050_ACCEL_YOUT_L	0x3E
#define	MPU6050_ACCEL_ZOUT_H	0x3F
#define	MPU6050_ACCEL_ZOUT_L	0x40
#define	MPU6050_TEMP_OUT_H		0x41
#define	MPU6050_TEMP_OUT_L		0x42
#define	MPU6050_GYRO_XOUT_H		0x43
#define	MPU6050_GYRO_XOUT_L		0x44
#define	MPU6050_GYRO_YOUT_H		0x45
#define	MPU6050_GYRO_YOUT_L		0x46
#define	MPU6050_GYRO_ZOUT_H		0x47
#define	MPU6050_GYRO_ZOUT_L		0x48

#define	MPU6050_PWR_MGMT_1		0x6B
#define	MPU6050_PWR_MGMT_2		0x6C
#define	MPU6050_WHO_AM_I		0x75

#endif

main.c文件:

#include "stm32f10x.h"                  // Device header
#include "Delay.h"
#include "OLED.h"
#include "MPU6050.h"

uint8_t ID;								//定义用于存放ID号的变量
int16_t AX, AY, AZ, GX, GY, GZ, TM;			//定义用于存放各个数据的变量

int main(void)
{
	/*模块初始化*/
	OLED_Init();		//OLED初始化
	MPU6050_Init();		//MPU6050初始化
	
	/*显示ID号*/
	OLED_ShowString(1, 1, "ID:");		//显示静态字符串
	ID = MPU6050_GetID();				//获取MPU6050的ID号
	OLED_ShowHexNum(1, 4, ID, 2);		//OLED显示ID号
	
	while (1)
	{
		MPU6050_GetData(&AX, &AY, &AZ, &GX, &GY, &GZ, &TM);		//获取MPU6050的数据
		OLED_ShowNum(1,8, (TM/340 + 36.5), 2);                //显示温度
		
		OLED_ShowSignedNum(2, 1, AX, 5);					//OLED显示数据
		OLED_ShowSignedNum(3, 1, AY, 5);
		OLED_ShowSignedNum(4, 1, AZ, 5);
		OLED_ShowSignedNum(2, 8, GX, 5);
		OLED_ShowSignedNum(3, 8, GY, 5);
		OLED_ShowSignedNum(4, 8, GZ, 5);
	}
}

以上文件通过编译后下载到芯片中就能得到如下图的结果了:

版权声明:本文为博主原创文章,遵循 CC 4.0 BY-SA 版权协议,转载请附上原文出处链接和本声明。
本文链接:https://blog.csdn.net/xingyuncao520025/article/details/138020117

智能推荐

分布式光纤传感器的全球与中国市场2022-2028年:技术、参与者、趋势、市场规模及占有率研究报告_预计2026年中国分布式传感器市场规模有多大-程序员宅基地

文章浏览阅读3.2k次。本文研究全球与中国市场分布式光纤传感器的发展现状及未来发展趋势,分别从生产和消费的角度分析分布式光纤传感器的主要生产地区、主要消费地区以及主要的生产商。重点分析全球与中国市场的主要厂商产品特点、产品规格、不同规格产品的价格、产量、产值及全球和中国市场主要生产商的市场份额。主要生产商包括:FISO TechnologiesBrugg KabelSensor HighwayOmnisensAFL GlobalQinetiQ GroupLockheed MartinOSENSA Innovati_预计2026年中国分布式传感器市场规模有多大

07_08 常用组合逻辑电路结构——为IC设计的延时估计铺垫_基4布斯算法代码-程序员宅基地

文章浏览阅读1.1k次,点赞2次,收藏12次。常用组合逻辑电路结构——为IC设计的延时估计铺垫学习目的:估计模块间的delay,确保写的代码的timing 综合能给到多少HZ,以满足需求!_基4布斯算法代码

OpenAI Manager助手(基于SpringBoot和Vue)_chatgpt网页版-程序员宅基地

文章浏览阅读3.3k次,点赞3次,收藏5次。OpenAI Manager助手(基于SpringBoot和Vue)_chatgpt网页版

关于美国计算机奥赛USACO,你想知道的都在这_usaco可以多次提交吗-程序员宅基地

文章浏览阅读2.2k次。USACO自1992年举办,到目前为止已经举办了27届,目的是为了帮助美国信息学国家队选拔IOI的队员,目前逐渐发展为全球热门的线上赛事,成为美国大学申请条件下,含金量相当高的官方竞赛。USACO的比赛成绩可以助力计算机专业留学,越来越多的学生进入了康奈尔,麻省理工,普林斯顿,哈佛和耶鲁等大学,这些同学的共同点是他们都参加了美国计算机科学竞赛(USACO),并且取得过非常好的成绩。适合参赛人群USACO适合国内在读学生有意向申请美国大学的或者想锻炼自己编程能力的同学,高三学生也可以参加12月的第_usaco可以多次提交吗

MySQL存储过程和自定义函数_mysql自定义函数和存储过程-程序员宅基地

文章浏览阅读394次。1.1 存储程序1.2 创建存储过程1.3 创建自定义函数1.3.1 示例1.4 自定义函数和存储过程的区别1.5 变量的使用1.6 定义条件和处理程序1.6.1 定义条件1.6.1.1 示例1.6.2 定义处理程序1.6.2.1 示例1.7 光标的使用1.7.1 声明光标1.7.2 打开光标1.7.3 使用光标1.7.4 关闭光标1.8 流程控制的使用1.8.1 IF语句1.8.2 CASE语句1.8.3 LOOP语句1.8.4 LEAVE语句1.8.5 ITERATE语句1.8.6 REPEAT语句。_mysql自定义函数和存储过程

半导体基础知识与PN结_本征半导体电流为0-程序员宅基地

文章浏览阅读188次。半导体二极管——集成电路最小组成单元。_本征半导体电流为0

随便推点

【Unity3d Shader】水面和岩浆效果_unity 岩浆shader-程序员宅基地

文章浏览阅读2.8k次,点赞3次,收藏18次。游戏水面特效实现方式太多。咱们这边介绍的是一最简单的UV动画(无顶点位移),整个mesh由4个顶点构成。实现了水面效果(左图),不动代码稍微修改下参数和贴图可以实现岩浆效果(右图)。有要思路是1,uv按时间去做正弦波移动2,在1的基础上加个凹凸图混合uv3,在1、2的基础上加个水流方向4,加上对雾效的支持,如没必要请自行删除雾效代码(把包含fog的几行代码删除)S..._unity 岩浆shader

广义线性模型——Logistic回归模型(1)_广义线性回归模型-程序员宅基地

文章浏览阅读5k次。广义线性模型是线性模型的扩展,它通过连接函数建立响应变量的数学期望值与线性组合的预测变量之间的关系。广义线性模型拟合的形式为:其中g(μY)是条件均值的函数(称为连接函数)。另外,你可放松Y为正态分布的假设,改为Y 服从指数分布族中的一种分布即可。设定好连接函数和概率分布后,便可以通过最大似然估计的多次迭代推导出各参数值。在大部分情况下,线性模型就可以通过一系列连续型或类别型预测变量来预测正态分布的响应变量的工作。但是,有时候我们要进行非正态因变量的分析,例如:(1)类别型.._广义线性回归模型

HTML+CSS大作业 环境网页设计与实现(垃圾分类) web前端开发技术 web课程设计 网页规划与设计_垃圾分类网页设计目标怎么写-程序员宅基地

文章浏览阅读69次。环境保护、 保护地球、 校园环保、垃圾分类、绿色家园、等网站的设计与制作。 总结了一些学生网页制作的经验:一般的网页需要融入以下知识点:div+css布局、浮动、定位、高级css、表格、表单及验证、js轮播图、音频 视频 Flash的应用、ul li、下拉导航栏、鼠标划过效果等知识点,网页的风格主题也很全面:如爱好、风景、校园、美食、动漫、游戏、咖啡、音乐、家乡、电影、名人、商城以及个人主页等主题,学生、新手可参考下方页面的布局和设计和HTML源码(有用点赞△) 一套A+的网_垃圾分类网页设计目标怎么写

C# .Net 发布后,把dll全部放在一个文件夹中,让软件目录更整洁_.net dll 全局目录-程序员宅基地

文章浏览阅读614次,点赞7次,收藏11次。之前找到一个修改 exe 中 DLL地址 的方法, 不太好使,虽然能正确启动, 但无法改变 exe 的工作目录,这就影响了.Net 中很多获取 exe 执行目录来拼接的地址 ( 相对路径 ),比如 wwwroot 和 代码中相对目录还有一些复制到目录的普通文件 等等,它们的地址都会指向原来 exe 的目录, 而不是自定义的 “lib” 目录,根本原因就是没有修改 exe 的工作目录这次来搞一个启动程序,把 .net 的所有东西都放在一个文件夹,在文件夹同级的目录制作一个 exe._.net dll 全局目录

BRIEF特征点描述算法_breif description calculation 特征点-程序员宅基地

文章浏览阅读1.5k次。本文为转载,原博客地址:http://blog.csdn.net/hujingshuang/article/details/46910259简介 BRIEF是2010年的一篇名为《BRIEF:Binary Robust Independent Elementary Features》的文章中提出,BRIEF是对已检测到的特征点进行描述,它是一种二进制编码的描述子,摈弃了利用区域灰度..._breif description calculation 特征点

房屋租赁管理系统的设计和实现,SpringBoot计算机毕业设计论文_基于spring boot的房屋租赁系统论文-程序员宅基地

文章浏览阅读4.1k次,点赞21次,收藏79次。本文是《基于SpringBoot的房屋租赁管理系统》的配套原创说明文档,可以给应届毕业生提供格式撰写参考,也可以给开发类似系统的朋友们提供功能业务设计思路。_基于spring boot的房屋租赁系统论文