【RK3588 第二篇】YOLO V5在瑞芯微板子上部署问题记录汇总_rk3588部署的注意事项-程序员宅基地

技术标签: YOLO  瑞芯微  RKNN  rk3588  

YOLO V5训练模型部署到瑞芯微的板子上面,官方是有给出案例和转过详情的。并且也提供了Python版本的推理代码,以及C语言的代码。

但是,对于转换过程中的细节,哪些需要改?怎么改?如何改,和为什么这样改的问题,并没有给出详细的介绍。

于是,本文就是对官方给出部分外的一个补充。这部分都是多次踩过坑的总结,相信会对你的操作和遇到的问题会有较大帮助的。

一、从pytorchptrknn转换

  • 第一步: 使用yolov5提供的export.py函数导出yolov5.onnx模型
python3 export.py --weights yolov5s.pt --img-size 640 --include onnx
  • 第二步:使用onnxsim简化导出的yolov5.onnx模型

onnxsim是一个基于ONNX规范的工具,通过简化ONNX模型和优化ONNX模型,帮助用户减小模型大小、提高模型的推理速度和减少推理过程中的内存开销
onnxsim的工作原理是将一个ONNX模型简化成最少的节点,并优化这些节点,以最小化推理过程中的开销。
同时,onnxsim还可以处理支持的神经网络层类型,支持多个平台,例如:CPU,GPU, FPGA等。

onnxsim安装和使用:onnx-simplifier

pip3 install onnxsim

Then:

onnxsim input_onnx_model output_onnx_model
  • 第三步:要完全使用rknn提供的部署转换代码,需要根据简化后的onnx模型,选取合适层的输出,以替代以下代码中的‘378’,‘439’和‘500’,如下图onnx例子中的'onnx::Reshape_446',‘onnx::Reshape_484’,‘onnx::Reshape_522’。(这三个name,可能都是不一样的,是什么就填什么即可)
# Load ONNX model
print('--> Loading model')
ret = rknn.load_onnx(model=ONNX_MODEL, outputs=['onnx::Reshape_446', 'onnx::Reshape_484', 'onnx::Reshape_522'])
if ret != 0:
    print('Load yolov5 failed!')
    exit(ret)
print('done')

采用Netron打开的onnx文件,如下:

1疑问:为什么不用最后合并后的输出结果?

因为,最后的形状不固定导致的,有可能5个框,有可能10个框。输出模型到固定大小,后续操作放到后处理,目的是为了加快模型的npu上的推理速度(这里是我的理解,不一定正确,欢迎补充)

PyTorch中,神经网络的输出形状通常是根据输入形状来自动计算的,而在 ONNX 中,输出形状需要在转换时进行显式指定,这是由于 ONNX 的静态图执行模型与 PyTorch 的动态图执行模型不同所致。
当你将PyTorch模型转换为 ONNX 模型时,你需要为 ONNX 模型中的每个输出定义固定的形状,以便在模型执行时为其分配正确的内存空间。如果输出形状不固定,那么 ONNX 运行时就需要在运行时动态调整输出形状,这将使得模型在部署时的性能受到影响。
因此,在转换 PyTorch 模型为 ONNX 模型时,你需要手动指定每个输出的固定形状,以便在执行时能够顺利运行。

Yolo v5的输出格式一般为a × b × c × 85的形式,其中:

  1. a*b*c表示框的数目
  2. 85则涵盖框的位置信息(xc,yc,w,h)、前景的置信度Pc80个类别的预测条件概率c1,...,c80。(4+1+80,无背景类)

如果是你自己的模型,可能是只有3个目标类别,那么最后就是4+1+3=8,这个值记得在onnx模型中查看到。

二、需要注意事项

2.1、 设定anchor

anchor的设定,在训练yolo v5模型时候,是可以设定自动适应,采用聚类的方式,通过标注的目标框的大小,给出anchor的值。在train.py中,noaotoanchor的默认为False,如果设定为True,则会使用默认的anchor设定。

所以,如果经过autoanchor,给出了新的anchor设定,那么在推理和转完rknn后的设定,都需要与之相匹配的anchor,这个很重要。

为什么官方和很多博客,都没有注意到这个问题呢?因为大多数情况下,aotoanchor并没有发挥作用。都是使用了默认的,导致很多人即便没有注意到这个问题,最后的结果也不差。

但是,如果是不一样的,结果就会比较差,这个值就需要对应的做修改了。所以这里一定需要注意,确保设定的没有错误。

下面介绍两种查询训练好的模型对应anchor值的两种方式。一种是在训练阶段观察,看看是否自动设定了新的anchor,另一种是在存储好的模型里面查看,也是可以读取到的。

2.1.1、训练阶段记录

如果在训练阶段,你已经关注到autoAnchor的输出结果,可以在这里直接进行记录,在terminal打印的内容,大致如下:

AutoAnchor: 3.60 anchors/target, 0.974 Best Possible Recall (BPR). Anchors are a poor fit to dataset , attempting to improve...
AutoAnchor: WARNING  Extremely small objects found: 764 of 27545 labels are <3 pixels in size
AutoAnchor: Running kmeans for 9 anchors on 27522 points...
AutoAnchor: Evolving anchors with Genetic Algorithm: fitness = 0.8052: 100%|██████████| 1000/1000 00:10
AutoAnchor: thr=0.25: 0.9996 best possible recall, 5.11 anchors past thr
AutoAnchor: n=9, img_size=640, metric_all=0.358/0.805-mean/best, past_thr=0.532-mean: 5,5, 7,8, 11,11, 17,17, 28,28, 41,37, 56,56, 79,82, 143,140

2.1.2、pt 文件查询记录

查询autoAnchor记录到.pt文件内的anchor设定,如下:

import torch
import sys
sys.path.append("path/yolov5-master")
weights = 'best.pt'
model = torch.load(str(weights[0] if isinstance(weights, list) else weights), map_location='cpu')
model1 = model['ema' if model.get('ema') else 'model']
model2 = model1.float().fuse().model.state_dict()

for k,v in model2.items():
    if 'anchor' in k:
        # print(k)
        # print(v)
        print(v.numpy().flatten().tolist())

打印结果:

Fusing layers... 
[0.54345703125, 0.58251953125, 0.8525390625, 0.88818359375, 1.353515625, 1.318359375, 1.0859375, 1.0380859375, 1.75390625, 1.705078125, 2.38671875, 2.462890625, 1.7421875, 1.6787109375, 2.578125, 2.458984375, 3.904296875, 3.75]
[4.34765625, 4.66015625, 6.8203125, 7.10546875, 10.828125, 10.546875, 17.375, 16.609375, 28.0625, 27.28125, 38.1875, 39.40625, 55.75, 53.71875, 82.5, 78.6875, 124.9375, 120.0]
YOLOv5m summary: 308 layers, 21037791 parameters, 0 gradients

第二行是真的,需要取整。第一行…

经过我的发现,如果你打印的anchor就一行,那么可能是默认的anchor(默认使用COCO数据集的anchor),就是good fit to dataset,也就是默认的:

[[10, 13], [16, 30], [33, 23],
[30, 61], [62, 45],[59, 119],
[116, 90], [156, 198], [373, 326]]

2.2、rk3588 推理性能查看

如何查看,可以去看第一篇的文章,在预测推理部分有几行代码是用于查询这个信息的。在官方的文档里面,也能看到。

其中,yolo v5m 量化前性能:

推理性能:
                               Performance                              
Total Time(us): 194162
FPS: 5.15

占用内存:
            Memory Profile Info Dump                  

NPU model memory detail(bytes):
    Total Weight Memory: 39.83 MiB
    Total Internal Tensor Memory: 19.50 MiB
    Total Memory: 59.33 MiB

量化后性能

推理性能:
                               Performance                              
Total Time(us): 137508
FPS: 7.27


占用内存:

            Memory Profile Info Dump                  
NPU model memory detail(bytes):
    Total Weight Memory: 20.03 MiB
    Total Internal Tensor Memory: 8.75 MiB
    Total Memory: 28.78 MiB

总的来说:

  • 模型时间效率上,量化后能降低30%194ms137ms
  • 占用内存上,量化后减少50%59Mib29Mib

三、C/C++ API部署

上述两个参考链接,基本囊括了一下几个部分:

  1. rknn模型转换
  2. Python rknn推理
  3. c/c++ rknn推理( YOLO v5部分是瑞芯微官方开放的代码)

如果你也是参考瑞芯微官方的C API代码,那么替换上你的模型后,有几个地方需要修改:

  1. 输入图像大小要改
  2. anchor尺寸要改
    const int anchor0[6] = {4, 5, 7, 7, 11, 11};
    const int anchor1[6] = {17, 17, 28, 27, 38, 39};
    const int anchor2[6] = {56, 54, 83, 79, 125, 120};
  3. 前景box阈值修改
    const float box_conf_threswin = 0.25;
  4. nms阈值修改
    const float nms_threswin = 0.1;
  5. 类别置信度重新调整
    objProbs.push_back(current_prob*box_confidence);
  6. 针对各个类,采用不同的阈值(待补充,这部分瑞芯微未采用这种二次过滤方式)

尤其是anchor这里,如果设定的不对,那么输出的结果就会非常的奇怪。如果是对的,那么差异性相对会小很多(和本地pt测试结果对比)。

四、总结

本文是对YOLO V5模型部署到瑞芯微板子上遇到的问题汇总。当然可能还会存在其他的更多问题,但是暂时还没有遇到,所以后面如果还会遇到什么问题,还会补充到这里。

如果你也正在做这块,并且遇到了问题,可以评论交流。目前还发现就是转模型后的评估问题,这个后面也会按照官方教程进行测试,这是下一篇的预告,期待。


最后,如果你觉得本篇文章对你有帮助,欢迎点赞,让更多人看到,这是对我继续写下去的鼓励。本系列文章都不会收费,如果能再点击下方的红包打赏,给博主来一杯咖啡,那就太好了。

版权声明:本文为博主原创文章,遵循 CC 4.0 BY-SA 版权协议,转载请附上原文出处链接和本声明。
本文链接:https://blog.csdn.net/wsLJQian/article/details/132845991

智能推荐

hive使用适用场景_大数据入门:Hive应用场景-程序员宅基地

文章浏览阅读5.8k次。在大数据的发展当中,大数据技术生态的组件,也在不断地拓展开来,而其中的Hive组件,作为Hadoop的数据仓库工具,可以实现对Hadoop集群当中的大规模数据进行相应的数据处理。今天我们的大数据入门分享,就主要来讲讲,Hive应用场景。关于Hive,首先需要明确的一点就是,Hive并非数据库,Hive所提供的数据存储、查询和分析功能,本质上来说,并非传统数据库所提供的存储、查询、分析功能。Hive..._hive应用场景

zblog采集-织梦全自动采集插件-织梦免费采集插件_zblog 网页采集插件-程序员宅基地

文章浏览阅读496次。Zblog是由Zblog开发团队开发的一款小巧而强大的基于Asp和PHP平台的开源程序,但是插件市场上的Zblog采集插件,没有一款能打的,要么就是没有SEO文章内容处理,要么就是功能单一。很少有适合SEO站长的Zblog采集。人们都知道Zblog采集接口都是对Zblog采集不熟悉的人做的,很多人采取模拟登陆的方法进行发布文章,也有很多人直接操作数据库发布文章,然而这些都或多或少的产生各种问题,发布速度慢、文章内容未经严格过滤,导致安全性问题、不能发Tag、不能自动创建分类等。但是使用Zblog采._zblog 网页采集插件

Flink学习四:提交Flink运行job_flink定时运行job-程序员宅基地

文章浏览阅读2.4k次,点赞2次,收藏2次。restUI页面提交1.1 添加上传jar包1.2 提交任务job1.3 查看提交的任务2. 命令行提交./flink-1.9.3/bin/flink run -c com.qu.wc.StreamWordCount -p 2 FlinkTutorial-1.0-SNAPSHOT.jar3. 命令行查看正在运行的job./flink-1.9.3/bin/flink list4. 命令行查看所有job./flink-1.9.3/bin/flink list --all._flink定时运行job

STM32-LED闪烁项目总结_嵌入式stm32闪烁led实验总结-程序员宅基地

文章浏览阅读1k次,点赞2次,收藏6次。这个项目是基于STM32的LED闪烁项目,主要目的是让学习者熟悉STM32的基本操作和编程方法。在这个项目中,我们将使用STM32作为控制器,通过对GPIO口的控制实现LED灯的闪烁。这个STM32 LED闪烁的项目是一个非常简单的入门项目,但它可以帮助学习者熟悉STM32的编程方法和GPIO口的使用。在这个项目中,我们通过对GPIO口的控制实现了LED灯的闪烁。LED闪烁是STM32入门课程的基础操作之一,它旨在教学生如何使用STM32开发板控制LED灯的闪烁。_嵌入式stm32闪烁led实验总结

Debezium安装部署和将服务托管到systemctl-程序员宅基地

文章浏览阅读63次。本文介绍了安装和部署Debezium的详细步骤,并演示了如何将Debezium服务托管到systemctl以进行方便的管理。本文将详细介绍如何安装和部署Debezium,并将其服务托管到systemctl。解压缩后,将得到一个名为"debezium"的目录,其中包含Debezium的二进制文件和其他必要的资源。注意替换"ExecStart"中的"/path/to/debezium"为实际的Debezium目录路径。接下来,需要下载Debezium的压缩包,并将其解压到所需的目录。

Android 控制屏幕唤醒常亮或熄灭_android实现拿起手机亮屏-程序员宅基地

文章浏览阅读4.4k次。需求:在诗词曲文项目中,诗词整篇朗读的时候,文章没有读完会因为屏幕熄灭停止朗读。要求:在文章没有朗读完毕之前屏幕常亮,读完以后屏幕常亮关闭;1.权限配置:设置电源管理的权限。

随便推点

目标检测简介-程序员宅基地

文章浏览阅读2.3k次。目标检测简介、评估标准、经典算法_目标检测

记SQL server安装后无法连接127.0.0.1解决方法_sqlserver 127 0 01 无法连接-程序员宅基地

文章浏览阅读6.3k次,点赞4次,收藏9次。实训时需要安装SQL server2008 R所以我上网上找了一个.exe 的安装包链接:https://pan.baidu.com/s/1_FkhB8XJy3Js_rFADhdtmA提取码:ztki注:解压后1.04G安装时Microsoft需下载.NET,更新安装后会自动安装如下:点击第一个傻瓜式安装,唯一注意的是在修改路径的时候如下不可修改:到安装实例的时候就可以修改啦数据..._sqlserver 127 0 01 无法连接

js 获取对象的所有key值,用来遍历_js 遍历对象的key-程序员宅基地

文章浏览阅读7.4k次。1. Object.keys(item); 获取到了key之后就可以遍历的时候直接使用这个进行遍历所有的key跟valuevar infoItem={ name:'xiaowu', age:'18',}//的出来的keys就是[name,age]var keys=Object.keys(infoItem);2. 通常用于以下实力中 <div *ngFor="let item of keys"> <div>{{item}}.._js 遍历对象的key

粒子群算法(PSO)求解路径规划_粒子群算法路径规划-程序员宅基地

文章浏览阅读2.2w次,点赞51次,收藏310次。粒子群算法求解路径规划路径规划问题描述    给定环境信息,如果该环境内有障碍物,寻求起始点到目标点的最短路径, 并且路径不能与障碍物相交,如图 1.1.1 所示。1.2 粒子群算法求解1.2.1 求解思路    粒子群优化算法(PSO),粒子群中的每一个粒子都代表一个问题的可能解, 通过粒子个体的简单行为,群体内的信息交互实现问题求解的智能性。    在路径规划中,我们将每一条路径规划为一个粒子,每个粒子群群有 n 个粒 子,即有 n 条路径,同时,每个粒子又有 m 个染色体,即中间过渡点的_粒子群算法路径规划

量化评价:稳健的业绩评价指标_rar 海龟-程序员宅基地

文章浏览阅读353次。所谓稳健的评估指标,是指在评估的过程中数据的轻微变化并不会显著的影响一个统计指标。而不稳健的评估指标则相反,在对交易系统进行回测时,参数值的轻微变化会带来不稳健指标的大幅变化。对于不稳健的评估指标,任何对数据有影响的因素都会对测试结果产生过大的影响,这很容易导致数据过拟合。_rar 海龟

IAP在ARM Cortex-M3微控制器实现原理_value line devices connectivity line devices-程序员宅基地

文章浏览阅读607次,点赞2次,收藏7次。–基于STM32F103ZET6的UART通讯实现一、什么是IAP,为什么要IAPIAP即为In Application Programming(在应用中编程),一般情况下,以STM32F10x系列芯片为主控制器的设备在出厂时就已经使用J-Link仿真器将应用代码烧录了,如果在设备使用过程中需要进行应用代码的更换、升级等操作的话,则可能需要将设备返回原厂并拆解出来再使用J-Link重新烧录代码,这就增加了很多不必要的麻烦。站在用户的角度来说,就是能让用户自己来更换设备里边的代码程序而厂家这边只需要提供给_value line devices connectivity line devices