spatialreg | 空间滞后模型(SLR)、空间误差模型(SEM)和空间杜宾模型(SDM)的简单形式的R语言实现...-程序员宅基地

技术标签: python  机器学习  深度学习  人工智能  js  

关于空间计量模型,小编是通过阅读勒沙杰(James LeSage)和佩斯(R.Kelley Pace)合著的《空间计量经济学导论》(Introduction of Spatial Econometrics)入门的,但是当时着重的是理解这些模型,并没有用代码去实现。

作者也提供了书中模型的Matlab代码,可以在网站http://www.spatial-econometrics.com/(Econometrics Toolbox: by James P. LeSage)上查看。另外,作者之一的佩斯还有一个网站http://www.spatial-statistics.com/(Spatial Statistics Software and Articles),上面有一些空间统计领域的Matlab工具箱和论文。

由于小编目前也在学习阶段,因此本篇只会使用R语言去实现这些模型的一些比较简单的形式,使用的工具包是spatialreg,后续可能会分享一些更复杂的内容。

模型形式

空间滞后模型

自回归模型(Autoregressive Model,AR)在时间序列分析中很易理解,即因变量与它的时间滞后值(Lag)存在相关性,这也意味着自回归模型放弃了因变量独立性的假设。

在空间计量模型中,空间滞后值被认为是邻近空间单元的属性(加权)值,因此下面是一个形式比较简单的空间自回归模型(最简单的形式应该是不包含自变量),也就是空间滞后模型(Spatial Lagged Model,SLR):

  • 空间自回归模型一般就是指空间滞后模型,但它也有一个更广义的概念,即所有包含因变量的空间滞后项的模型;

  • 模型估计时会首先对参数进行估计,再使用广义最小二乘法估计和其他参数。

空间误差模型

空间误差模型(Spatial Error Model,SEM)可以分解成如下两步:

上述两式合并得,

  • 第一个式子并非线性模型,因为不需要服从正态分布;

  • 模型估计时会首先对参数进行估计,再使用广义最小二乘法估计和其他参数。

空间杜宾模型

空间杜宾模型(Spatial Durbin Model,SDM)假定因变量取值除受本地自变量的影响外,还会受到邻近地区的自变量影响,即在模型中加入自变量的空间滞后值:

复合模型

上述三个模型各自有针对性的假设,但这些假设相互之间并不排斥,可以在同一个模型中存在。

  • 空间自相关模型

  • 该模型综合了空间滞后模型和空间误差模型,称作空间自相关模型(Spatial Autocorrelation Model,SAC);

  • 当或其中一个为0时,SAC就退化成了SEM或SLM。

  • 空间杜宾(滞后)模型

  • 该模型综合了空间滞后模型和空间杜宾模型,但习惯上仍称作是空间杜宾模型。

  • 空间杜宾误差模型

  • 该模型综合了空间误差模型和空间杜宾模型,称作空间杜宾误差模型(Spatial Durbin Error Model,SDEM)。

  • 空间自相关杜宾模型

  • 该模型是最一般的形式,同时综合了三种基本模型,也可以认为是综合了空间自相关模型和空间杜宾模型。

R语言代码

函数概述

上述7个模型形式可以通过spatialreg工具包中的3个函数来实现:

  • lagsarlm():空间滞后模型、空间杜宾(滞后)模型

  • errorsarlm():空间误差模型、空间杜宾误差模型

  • sacsarlm():空间自相关模型、空间自相关杜宾模型

线性模型

示例数据如下:

library(sf)
library(tidyverse)
usa <- albersusa::counties_sf(proj = "laea") %>%
  mutate(fips = as.character(fips)) %>%
  left_join(socviz::county_data, by = c("fips" = "id"))

因变量取收入,自变量取黑人比例。在运行空间计量模型前,先使用线性模型进行建模:

data <- st_drop_geometry(usa)
model <- lm(hh_income ~ black, data = data)

summary(model)
## Call:
## lm(formula = hh_income ~ black, data = data)
## 
## Residuals:
##    Min     1Q Median     3Q    Max 
## -27680  -7341  -2171   4653  76006 
## 
## Coefficients:
##             Estimate Std. Error t value Pr(>|t|)    
## (Intercept) 47765.53     244.55  195.32   <2e-16 ***
## black        -199.18      14.29  -13.94   <2e-16 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 11570 on 3141 degrees of freedom
## Multiple R-squared:  0.05825,    Adjusted R-squared:  0.05795 
## F-statistic: 194.3 on 1 and 3141 DF,  p-value: < 2.2e-16

莫兰指数

使用莫兰指数检验因变量的空间自相关性:

library(spdep)
nb <- poly2nb(usa)
listW <- nb2listw(nb, zero.policy = T)

moran.plot(usa$hh_income, listW,
           zero.policy = T,
           labels = F,
           pch = 20, cex = 0.1)
  • 部分县没有邻接单元,设置zero.policy = T可以允许空间权重矩阵(实际空间数据结构是list)存在空元素。

04224a94b59d601cb7878d7326c43e61.png

空间计量模型

lagsarlm()函数为例,它的完整语法结构如下:

lagsarlm(formula, data = list(),
         listw, na.action,
         Durbin, type,
         method="eigen", quiet=NULL,
         zero.policy=NULL, interval=NULL,
         tol.solve=.Machine$double.eps,
         trs=NULL, control=list())

本篇仅涉及以下几个参数,其余参数使用...代替:

lagsarlm(formula, data = list(),
         listw, Durbin,
         zero.policy = NULL,
         ...,)
  • formula:与对应的线性模型的表达式一致;

  • data:变量所在的数据框;

  • listw:空间权重矩阵;

  • Durbin:是否在模型中加入自变量的空间滞后值;

  • zero.policy:针对权重矩阵存在空元素的应对方案,TRUE表示对应的空间滞后的权重为0。

  • 空间滞后模型

library(spatialreg)
sl_model <- lagsarlm(hh_income ~ black, data = data,
                     listw = listW, zero.policy = T)

summary(sl_model)
## Call:lagsarlm(formula = hh_income ~ black, data = data, listw = listW, 
##     zero.policy = T)
## 
## Residuals:
##      Min       1Q   Median       3Q      Max 
## -26914.4  -4772.3  -1298.9   2996.4  72040.0 
## 
## Type: lag 
## Regions with no neighbours included:
##  2788 2836 2995 3135 3140 3141 3143 
## Coefficients: (numerical Hessian approximate standard errors) 
##              Estimate Std. Error z value  Pr(>|z|)
## (Intercept) 14401.438    628.923  22.899 < 2.2e-16
## black        -121.955     10.236 -11.915 < 2.2e-16
## 
## Rho: 0.71234, LR test value: 1783.5, p-value: < 2.22e-16
## Approximate (numerical Hessian) standard error: 0.012906
##     z-value: 55.195, p-value: < 2.22e-16
## Wald statistic: 3046.5, p-value: < 2.22e-16
## 
## Log likelihood: -32973.68 for lag model
## ML residual variance (sigma squared): 67335000, (sigma: 8205.8)
## Number of observations: 3143 
## Number of parameters estimated: 4 
## AIC: 65955, (AIC for lm: 67737)
  • 空间误差模型

library(spatialreg)
se_model <- errorsarlm(hh_income ~ black, data = data,
                       listw = listW, zero.policy = T)

summary(se_model)
## Call:errorsarlm(formula = hh_income ~ black, data = data, listw = listW, 
##     zero.policy = T)
## 
## Residuals:
##      Min       1Q   Median       3Q      Max 
## -30053.7  -4590.2  -1184.3   2843.3  56012.9 
## 
## Type: error 
## Regions with no neighbours included:
##  2788 2836 2995 3135 3140 3141 3143 
## Coefficients: (asymptotic standard errors) 
##              Estimate Std. Error z value  Pr(>|z|)
## (Intercept) 50696.822    725.463  69.882 < 2.2e-16
## black        -400.074     18.035 -22.183 < 2.2e-16
## 
## Lambda: 0.82333, LR test value: 2384.3, p-value: < 2.22e-16
## Approximate (numerical Hessian) standard error: 0.011128
##     z-value: 73.99, p-value: < 2.22e-16
## Wald statistic: 5474.5, p-value: < 2.22e-16
## 
## Log likelihood: -32673.29 for error model
## ML residual variance (sigma squared): 52510000, (sigma: 7246.4)
## Number of observations: 3143 
## Number of parameters estimated: 4 
## AIC: 65355, (AIC for lm: 67737)
  • 空间杜宾误差模型

library(spatialreg)
sd_model <- errorsarlm(hh_income ~ black, data = data,
                       listw = listW, zero.policy = T,
                       Durbin = T)

summary(sd_model)
## Call:errorsarlm(formula = hh_income ~ black, data = data, listw = listW, 
##     Durbin = T, zero.policy = T)
## 
## Residuals:
##      Min       1Q   Median       3Q      Max 
## -29657.6  -4639.4  -1123.4   2817.7  56324.1 
## 
## Type: error 
## Regions with no neighbours included:
##  2788 2836 2995 3135 3140 3141 3143 
## Coefficients: (asymptotic standard errors) 
##              Estimate Std. Error  z value  Pr(>|z|)
## (Intercept) 48577.976    753.720  64.4509 < 2.2e-16
## black        -392.654     17.888 -21.9512 < 2.2e-16
## lag.black     223.080     36.404   6.1278 8.909e-10
## 
## Lambda: 0.81169, LR test value: 2384.6, p-value: < 2.22e-16
## Approximate (numerical Hessian) standard error: 0.011396
##     z-value: 71.228, p-value: < 2.22e-16
## Wald statistic: 5073.5, p-value: < 2.22e-16
## 
## Log likelihood: -32655.17 for error model
## ML residual variance (sigma squared): 52280000, (sigma: 7230.5)
## Number of observations: 3143 
## Number of parameters estimated: 5 
## AIC: 65320, (AIC for lm: 67703)

阅读原文有“惊喜”~

版权声明:本文为博主原创文章,遵循 CC 4.0 BY-SA 版权协议,转载请附上原文出处链接和本声明。
本文链接:https://blog.csdn.net/weixin_54000907/article/details/120631967

智能推荐

攻防世界_难度8_happy_puzzle_攻防世界困难模式攻略图文-程序员宅基地

文章浏览阅读645次。这个肯定是末尾的IDAT了,因为IDAT必须要满了才会开始一下个IDAT,这个明显就是末尾的IDAT了。,对应下面的create_head()代码。,对应下面的create_tail()代码。不要考虑爆破,我已经试了一下,太多情况了。题目来源:UNCTF。_攻防世界困难模式攻略图文

达梦数据库的导出(备份)、导入_达梦数据库导入导出-程序员宅基地

文章浏览阅读2.9k次,点赞3次,收藏10次。偶尔会用到,记录、分享。1. 数据库导出1.1 切换到dmdba用户su - dmdba1.2 进入达梦数据库安装路径的bin目录,执行导库操作  导出语句:./dexp cwy_init/[email protected]:5236 file=cwy_init.dmp log=cwy_init_exp.log 注释:   cwy_init/init_123..._达梦数据库导入导出

js引入kindeditor富文本编辑器的使用_kindeditor.js-程序员宅基地

文章浏览阅读1.9k次。1. 在官网上下载KindEditor文件,可以删掉不需要要到的jsp,asp,asp.net和php文件夹。接着把文件夹放到项目文件目录下。2. 修改html文件,在页面引入js文件:<script type="text/javascript" src="./kindeditor/kindeditor-all.js"></script><script type="text/javascript" src="./kindeditor/lang/zh-CN.js"_kindeditor.js

STM32学习过程记录11——基于STM32G431CBU6硬件SPI+DMA的高效WS2812B控制方法-程序员宅基地

文章浏览阅读2.3k次,点赞6次,收藏14次。SPI的详情简介不必赘述。假设我们通过SPI发送0xAA,我们的数据线就会变为10101010,通过修改不同的内容,即可修改SPI中0和1的持续时间。比如0xF0即为前半周期为高电平,后半周期为低电平的状态。在SPI的通信模式中,CPHA配置会影响该实验,下图展示了不同采样位置的SPI时序图[1]。CPOL = 0,CPHA = 1:CLK空闲状态 = 低电平,数据在下降沿采样,并在上升沿移出CPOL = 0,CPHA = 0:CLK空闲状态 = 低电平,数据在上升沿采样,并在下降沿移出。_stm32g431cbu6

计算机网络-数据链路层_接收方收到链路层数据后,使用crc检验后,余数为0,说明链路层的传输时可靠传输-程序员宅基地

文章浏览阅读1.2k次,点赞2次,收藏8次。数据链路层习题自测问题1.数据链路(即逻辑链路)与链路(即物理链路)有何区别?“电路接通了”与”数据链路接通了”的区别何在?2.数据链路层中的链路控制包括哪些功能?试讨论数据链路层做成可靠的链路层有哪些优点和缺点。3.网络适配器的作用是什么?网络适配器工作在哪一层?4.数据链路层的三个基本问题(帧定界、透明传输和差错检测)为什么都必须加以解决?5.如果在数据链路层不进行帧定界,会发生什么问题?6.PPP协议的主要特点是什么?为什么PPP不使用帧的编号?PPP适用于什么情况?为什么PPP协议不_接收方收到链路层数据后,使用crc检验后,余数为0,说明链路层的传输时可靠传输

软件测试工程师移民加拿大_无证移民,未受过软件工程师的教育(第1部分)-程序员宅基地

文章浏览阅读587次。软件测试工程师移民加拿大 无证移民,未受过软件工程师的教育(第1部分) (Undocumented Immigrant With No Education to Software Engineer(Part 1))Before I start, I want you to please bear with me on the way I write, I have very little gen...

随便推点

Thinkpad X250 secure boot failed 启动失败问题解决_安装完系统提示secureboot failure-程序员宅基地

文章浏览阅读304次。Thinkpad X250笔记本电脑,装的是FreeBSD,进入BIOS修改虚拟化配置(其后可能是误设置了安全开机),保存退出后系统无法启动,显示:secure boot failed ,把自己惊出一身冷汗,因为这台笔记本刚好还没开始做备份.....根据错误提示,到bios里面去找相关配置,在Security里面找到了Secure Boot选项,发现果然被设置为Enabled,将其修改为Disabled ,再开机,终于正常启动了。_安装完系统提示secureboot failure

C++如何做字符串分割(5种方法)_c++ 字符串分割-程序员宅基地

文章浏览阅读10w+次,点赞93次,收藏352次。1、用strtok函数进行字符串分割原型: char *strtok(char *str, const char *delim);功能:分解字符串为一组字符串。参数说明:str为要分解的字符串,delim为分隔符字符串。返回值:从str开头开始的一个个被分割的串。当没有被分割的串时则返回NULL。其它:strtok函数线程不安全,可以使用strtok_r替代。示例://借助strtok实现split#include <string.h>#include <stdio.h&_c++ 字符串分割

2013第四届蓝桥杯 C/C++本科A组 真题答案解析_2013年第四届c a组蓝桥杯省赛真题解答-程序员宅基地

文章浏览阅读2.3k次。1 .高斯日记 大数学家高斯有个好习惯:无论如何都要记日记。他的日记有个与众不同的地方,他从不注明年月日,而是用一个整数代替,比如:4210后来人们知道,那个整数就是日期,它表示那一天是高斯出生后的第几天。这或许也是个好习惯,它时时刻刻提醒着主人:日子又过去一天,还有多少时光可以用于浪费呢?高斯出生于:1777年4月30日。在高斯发现的一个重要定理的日记_2013年第四届c a组蓝桥杯省赛真题解答

基于供需算法优化的核极限学习机(KELM)分类算法-程序员宅基地

文章浏览阅读851次,点赞17次,收藏22次。摘要:本文利用供需算法对核极限学习机(KELM)进行优化,并用于分类。

metasploitable2渗透测试_metasploitable2怎么进入-程序员宅基地

文章浏览阅读1.1k次。一、系统弱密码登录1、在kali上执行命令行telnet 192.168.26.1292、Login和password都输入msfadmin3、登录成功,进入系统4、测试如下:二、MySQL弱密码登录:1、在kali上执行mysql –h 192.168.26.129 –u root2、登录成功,进入MySQL系统3、测试效果:三、PostgreSQL弱密码登录1、在Kali上执行psql -h 192.168.26.129 –U post..._metasploitable2怎么进入

Python学习之路:从入门到精通的指南_python人工智能开发从入门到精通pdf-程序员宅基地

文章浏览阅读257次。本文将为初学者提供Python学习的详细指南,从Python的历史、基础语法和数据类型到面向对象编程、模块和库的使用。通过本文,您将能够掌握Python编程的核心概念,为今后的编程学习和实践打下坚实基础。_python人工智能开发从入门到精通pdf

推荐文章

热门文章

相关标签