【DPDK】dpdk样例源码解析之四:dpdk-ip_reassembly_dpdk example的功能-程序员宅基地

技术标签: 【DPDK】  c  网络  IP重组  dpdk  dpdk样例  

本篇文章介绍DPDK下数据包重组实例代码简单逻辑及使用时注意事项,对应DPDK官网链接为IP Reassembly Sample Application,详细实现方式可参看源代码梳理,代码路径为dpdk-20.11.3/examples/ip_reassembly

操作系统版本CentOS 8.4

DPDK版本dpdk-20.11.3

1、样例功能

样例代码主要实现重组IP层分片报文,然后将重组后的报文转发出去,如类型为IPV4的数据包A(包总长度1434)、B(包总长度1434)、C(包总长度42)重组后得到数据包D(包总长度2842),集齐完毕之后将数据包ABCD依次根据匹配规则转发到指定端口,流程结束。

对于解析匹配转发功能的实现可参考dpdk-l3fwd样例解析这篇文章,这里重点说一下IP重组功能的实现。

如果实现IP重组功能,理论上需要一个API接口,每次接收一个数据包,首先判断这个报文是否是分片包,如果是分片包则调用重组API接口,主要实现传入的数据包如果是最后一个包(就差它就重组完成了),那么将重组后的数据包作为返回值从API接口中获取到,如果不是最后一个包,那么将这个数据包插入到类似于HASH表或者链表中,流程到此结束,继续解析下一个数据包。

实际上DPDKIP重组样例所实现流程就是这样,下面根据代码流程逐步进行了解。

2、IP重组模块

在此之前需要考虑几个问题:

1、是否需要考虑超时删除及如何确定超时时间?(时间太短容易缺失,也不可能将分片包一直保留,这样内存就爆了)

2、重组后的数据包是什么形式存在的?(已经重组好为一个数据包 或者 将分片的数据包有序链接为一个链表)

3、如何确定最多能够实现多少个分片包的重组?

一、分片节点哈希表初始化

main函数开始,对于EAL初始化、接收发送队列初始化这些和重组功能不相干的这里不再赘述,首先,调用setup_queue_tbl对分片报文所需要的ip_frag_table表进行初始化,流程如下:

在这里插入图片描述

这里调用rte_ip_frag_table_create用来创建ip_frag_table,接口功能解释如下:

/**
 * Create a new IP fragmentation table.
 *
 * @param bucket_num
 *   Number of buckets in the hash table. // 哈希表桶数量
 * @param bucket_entries
 *   Number of entries per bucket (e.g. hash associativity).	// 每个桶下挂在的节点数量
 *   Should be power of two.	// 应该为2的幂次方
 * @param max_entries
 *   Maximum number of entries that could be stored in the table.	// 哈希表存储的最大节点数量
 *   The value should be less or equal then bucket_num * bucket_entries. // 该值需小于或等于 桶数量 * 桶节点数量
 * @param max_cycles
 *   Maximum TTL in cycles for each fragmented packet.	// 每个分片包最长超时时间(TTL)
 * @param socket_id
 *   The *socket_id* argument is the socket identifier in the case of	
 *   NUMA. The value can be *SOCKET_ID_ANY* if there is no NUMA constraints.
 * @return
 *   The pointer to the new allocated fragmentation table, on success. NULL on error.	// 返回值为哈希表的地址,创建失败则为NULL
 */
struct rte_ip_frag_tbl * rte_ip_frag_table_create(uint32_t bucket_num,
		uint32_t bucket_entries,  uint32_t max_entries,
		uint64_t max_cycles, int socket_id);

二、分片包重组接口

进入到循环处理接口main_loop,对接收到的数据包调用reassemble接口进行数据包重组。

在这里插入图片描述

这里重点介绍reassemble接口流程

static inline void
reassemble(struct rte_mbuf *m, uint16_t portid, uint32_t queue,
	struct lcore_queue_conf *qconf, uint64_t tms)
{
    
	struct rte_ether_hdr *eth_hdr;
	struct rte_ip_frag_tbl *tbl;
	struct rte_ip_frag_death_row *dr;
	struct rx_queue *rxq;
	void *d_addr_bytes;
	uint32_t next_hop;
	uint16_t dst_port;

	rxq = &qconf->rx_queue_list[queue];

	eth_hdr = rte_pktmbuf_mtod(m, struct rte_ether_hdr *);

	dst_port = portid;

	/* if packet is IPv4 */ // 判断数据包类型IPV4 or IPV6
	if (RTE_ETH_IS_IPV4_HDR(m->packet_type)) {
    
		struct rte_ipv4_hdr *ip_hdr;
		uint32_t ip_dst;

		ip_hdr = (struct rte_ipv4_hdr *)(eth_hdr + 1);

		 /* if it is a fragmented packet, then try to reassemble. */ 
		if (rte_ipv4_frag_pkt_is_fragmented(ip_hdr)) {
     // 判断IPV4数据包是否时分片包
			struct rte_mbuf *mo;

			tbl = rxq->frag_tbl;
			dr = &qconf->death_row;

			/* prepare mbuf: setup l2_len/l3_len. */ // 获取数据链路层和IP层长度
			m->l2_len = sizeof(*eth_hdr);
			m->l3_len = sizeof(*ip_hdr);

			/* process this fragment. */	// 调用rte_ipv4_frag_reassemble_packet处理这个分片包
			mo = rte_ipv4_frag_reassemble_packet(tbl, dr, m, tms, ip_hdr);
			if (mo == NULL)	// 返回值为NULL 说明还没有重组完成,或者重组失败了
				/* no packet to send out. */
				return;

			/* we have our packet reassembled. */	// 不为空则说明已经重组完成
			if (mo != m) {
    	// 如果mo != m 说明最后一个进去的数据包m不是分片包的第一个
				m = mo; // 把重组完成的分片包链表头赋值给m
				eth_hdr = rte_pktmbuf_mtod(m,
					struct rte_ether_hdr *); // 获取链路层头
				ip_hdr = (struct rte_ipv4_hdr *)(eth_hdr + 1); // 获取IP层头
			}

			/* update offloading flags */
			m->ol_flags |= (PKT_TX_IPV4 | PKT_TX_IP_CKSUM); // 更新数据包的offloading flags
		}
		ip_dst = rte_be_to_cpu_32(ip_hdr->dst_addr); // 获取到目的IP(后面转发使用)

		/* Find destination port */ // 匹配获取转发端口ID
		if (rte_lpm_lookup(rxq->lpm, ip_dst, &next_hop) == 0 &&
				(enabled_port_mask & 1 << next_hop) != 0) {
    
			dst_port = next_hop;
		}
		eth_hdr->ether_type = rte_be_to_cpu_16(RTE_ETHER_TYPE_IPV4);

	} else if (RTE_ETH_IS_IPV6_HDR(m->packet_type)) {
     // IPV6同上,不在赘述
		/* if packet is IPv6 */
		struct ipv6_extension_fragment *frag_hdr;
		struct rte_ipv6_hdr *ip_hdr;

		ip_hdr = (struct rte_ipv6_hdr *)(eth_hdr + 1);

		frag_hdr = rte_ipv6_frag_get_ipv6_fragment_header(ip_hdr);

		if (frag_hdr != NULL) {
    
			struct rte_mbuf *mo;

			tbl = rxq->frag_tbl;
			dr  = &qconf->death_row;

			/* prepare mbuf: setup l2_len/l3_len. */
			m->l2_len = sizeof(*eth_hdr);
			m->l3_len = sizeof(*ip_hdr) + sizeof(*frag_hdr);

			mo = rte_ipv6_frag_reassemble_packet(tbl, dr, m, tms, ip_hdr, frag_hdr);
			if (mo == NULL)
				return;

			if (mo != m) {
    
				m = mo;
				eth_hdr = rte_pktmbuf_mtod(m,
							struct rte_ether_hdr *);
				ip_hdr = (struct rte_ipv6_hdr *)(eth_hdr + 1);
			}
		}

		/* Find destination port */
		if (rte_lpm6_lookup(rxq->lpm6, ip_hdr->dst_addr,
						&next_hop) == 0 &&
				(enabled_port_mask & 1 << next_hop) != 0) {
    
			dst_port = next_hop;
		}		
		eth_hdr->ether_type = rte_be_to_cpu_16(RTE_ETHER_TYPE_IPV6);
	}
	/* if packet wasn't IPv4 or IPv6, it's forwarded to the port it came from */

	/* 02:00:00:00:00:xx */
	d_addr_bytes = &eth_hdr->d_addr.addr_bytes[0];
	*((uint64_t *)d_addr_bytes) = 0x000000000002 + ((uint64_t)dst_port << 40);

	/* src addr */
	rte_ether_addr_copy(&ports_eth_addr[dst_port], &eth_hdr->s_addr);

	send_single_packet(m, dst_port); // 将本身不是分片的数据包或者重组完成后的数据包转发到指定端接口
}

这里涉及到rte_ipv4_frag_reassemble_packet接口,接口功能如下:

/**
 * This function implements reassembly of fragmented IPv4 packets.
 * Incoming mbufs should have its l2_len/l3_len fields setup correctly.
 *
 * @param tbl
 *   Table where to lookup/add the fragmented packet. // 需要查找或者添加的分片哈希表
 * @param dr
 *   Death row to free buffers to	// 回收超时或者重组错误的分片包
 * @param mb
 *   Incoming mbuf with IPv4 fragment.	// 分片报文
 * @param tms
 *   Fragment arrival timestamp.	// 分片报文时间戳
 * @param ip_hdr
 *   Pointer to the IPV4 header inside the fragment.	// 分片包的IP层头
 * @return
 *   Pointer to mbuf for reassembled packet, or NULL if:  // 如果重组完成返回重组后的第一个mbuf数据包地址,可以理解为链表头节点, 如果返回值为NULL则说明重组失败,或者重组未完成(重组数据包不全)
 *   - an error occurred.
 *   - not all fragments of the packet are collected yet.
 */
struct rte_mbuf * rte_ipv4_frag_reassemble_packet(struct rte_ip_frag_tbl *tbl,
		struct rte_ip_frag_death_row *dr,
		struct rte_mbuf *mb, uint64_t tms, struct rte_ipv4_hdr *ip_hdr);

rte_ipv6_frag_reassemble_packet功能类似,不在赘述。

二、分片包回收

每次调用rte_ipv4_frag_reassemble_packet或者rte_ipv6_frag_reassemble_packetc重组数据包时,会将death_row实参传入进去,对于重组过程中由于超时或者其他原因失败的数据包,回传入到death_row表中进行回收释放

调用位置为:

在这里插入图片描述

至此,可以获取到问题1和2的答案,

问题1解释

1)、超时时间是在哈希表创建时,参数frag_cycles决定的,而frag_cycles的值,在代码中也有体现

frag_cycles = (rte_get_tsc_hz() + MS_PER_S - 1) / MS_PER_S * max_flow_ttl;

2)、超时及重组错误分片包数据回收调用rte_ip_frag_free_death_row接口实现。

问题2解释

1)、对于重组后的数据包,返回的类似于链表的头指针,struct rte_mbuf接口中next指针表示Next segment of scattered packet.

问题3解释

最后一个问题可以在代码中找到对应的数值

/* ip_fragmentation defines */
#define RTE_LIBRTE_IP_FRAG_MAX_FRAG 4

ip分片默认最大为4个,下面通过执行程序进行几个简单的测试。

3、执行程序

这里测试和验证重组消息,将一个数据包拆分为4片、5片,一台服务器启动ip_reassembly程序,然后另外一台服务器发送这些分片包。

1、测试重组分片包超时

通过控制发包速率,测试分片包超时会不会重组成功。

2、测试重组后分片包的格式

通过打印重组成功后的分片包内容,测试分片包重组后的格式。

3、测试最大重组分片包个数

通过控制发送分片包的个数,测试最大能够重组的分片包数量。

然后代码中添加打印参数,用于打印重组成功后数据包的内容信息,以此可以用来测试以上3个问题。

在这里插入图片描述

可以看出,如果重组失败或者重组未完成,流程不会到添加的打印代码段,因此可以这些打印即可判断慢速发送分片数据包导致分片包超时删除导致重组失败,又可以判断数据包分片过多(4个以上)导致数据包重组失败,又可以哦按段已经数据包重组后的格式是否符合预期。

启动程序命令

./ip_reassembly_app-static -l 1-2 --log-level 8 -n 4 -- -p 0x1
[root@LFTF dpdk-ip_reassembly]# ./ip_reassembly_app-static -l 1-2 --log-level 8 -n 4 -- -p 0x1
EAL: Detected 40 lcore(s)
EAL: Detected 2 NUMA nodes
EAL: Multi-process socket /var/run/dpdk/rte/mp_socket
EAL: Selected IOVA mode 'VA'
EAL: No available hugepages reported in hugepages-2048kB
EAL: Probing VFIO support...
EAL: VFIO support initialized
EAL: DPDK is running on a NUMA system, but is compiled without NUMA support.
EAL: This will have adverse consequences for performance and usability.
EAL: Please use --legacy-mem option, or recompile with NUMA support.
EAL:   using IOMMU type 1 (Type 1)
EAL: Ignore mapping IO port bar(2)
EAL: Probe PCI driver: net_ixgbe (8086:10fb) device: 0000:05:00.0 (socket 0)
EAL: Ignore mapping IO port bar(2)
EAL: Probe PCI driver: net_ixgbe (8086:10fb) device: 0000:05:00.1 (socket 0)
EAL: No legacy callbacks, legacy socket not created
IP_RSMBL: Creating LPM table on socket 0
IP_RSMBL: Creating LPM6 table on socket 0
USER1: rte_ip_frag_table_create: allocated of 33554560 bytes at socket 0
Initializing port 0 ... Port 0 modified RSS hash function based on hardware support,requested:0xa38c configured:0x8104
 Address:AC:F9:70:83:B6:63
txq=1,0,0 txq=2,1,0 

Skipping disabled port 1

IP_RSMBL: Socket 0: adding route 100.10.0.0/16 (port 0)
IP_RSMBL: Socket 0: adding route 100.20.0.0/16 (port 1)
IP_RSMBL: Socket 0: adding route 100.30.0.0/16 (port 2)
IP_RSMBL: Socket 0: adding route 100.40.0.0/16 (port 3)
IP_RSMBL: Socket 0: adding route 100.50.0.0/16 (port 4)
IP_RSMBL: Socket 0: adding route 100.60.0.0/16 (port 5)
IP_RSMBL: Socket 0: adding route 100.70.0.0/16 (port 6)
IP_RSMBL: Socket 0: adding route 100.80.0.0/16 (port 7)
IP_RSMBL: Socket 0: adding route 0101:0101:0101:0101:0101:0101:0101:0101/48 (port 0)
IP_RSMBL: Socket 0: adding route 0201:0101:0101:0101:0101:0101:0101:0101/48 (port 1)
IP_RSMBL: Socket 0: adding route 0301:0101:0101:0101:0101:0101:0101:0101/48 (port 2)
IP_RSMBL: Socket 0: adding route 0401:0101:0101:0101:0101:0101:0101:0101/48 (port 3)
IP_RSMBL: Socket 0: adding route 0501:0101:0101:0101:0101:0101:0101:0101/48 (port 4)
IP_RSMBL: Socket 0: adding route 0601:0101:0101:0101:0101:0101:0101:0101/48 (port 5)
IP_RSMBL: Socket 0: adding route 0701:0101:0101:0101:0101:0101:0101:0101/48 (port 6)
IP_RSMBL: Socket 0: adding route 0801:0101:0101:0101:0101:0101:0101:0101/48 (port 7)

Checking link status
done
Port 0 Link up at 10 Gbps FDX Autoneg
IP_RSMBL: lcore 2 has nothing to do
IP_RSMBL: entering main loop on lcore 1
IP_RSMBL:  -- lcoreid=1 portid=0

启动程序之后对端开始打包,加上打印代码之后,起初测试的时候发现了几个问题,仅能重组成功2个分片包,分片包超过2个的时候不能重组成功,后来摸索发现,当时没有考虑到超时问题,对端打包采用的命令如下:

[root@LF pcap]# tcpreplay -i enp2s -l 1 -p 4 ip_fragement.pcap

可以看出是一个一个的打包,因此导致处理解析第二个分片包是,第一个分片包超时删除了,导致重组失败。

后面我把打包命令改成如下全速发包:

[root@LF pcap]# tcpreplay -i enp2s -t -p 4 ip_fragement.pcap

这样就可以正常完成重组4个数据包了。但是后面又发现重组4个以上数据包时重组失败,这个时候查询代码发现了RTE_LIBRTE_IP_FRAG_MAX_FRAG值设置为4,然后把这个值改成8之后,再次发送5个分片的数据包仍然重组失败,此时认为可能是超时时间太短导致,因此将frag_cycles值改为frag_cycles *= 100之后再次编译代码仍然重组失败,再次查询RTE_LIBRTE_IP_FRAG_MAX_FRAG发现其它库函数也间接使用到了这个值,而且RTE_LIBRTE_IP_FRAG_MAX_FRAG值在rte_config.h定义,因此感觉需要重新编译DPDK才能解决这个问题,根据这个思路重新编译了RTE_LIBRTE_IP_FRAG_MAX_FRAG值为8的版本库,再次编译ip_reassembly样例程序,执行程序,对端打包,然后发现这次重组成功了。打印如下:

IPV6 Pkt_len = 1862

Data_len = 350
Data: [7a7ac0a8c80100000000003386dd6000000007101140fe800000000000000000000000000033fe8000000000000000000000000000010035003507105d98adadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadad]


Data_len = 296
Data: [adadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadad]


Data_len = 296
Data: [adadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadad]


Data_len = 296
Data: [adadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadad]


Data_len = 296
Data: [adadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadad]


Data_len = 296
Data: [adadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadad]


Data_len = 32
Data: [adadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadad]

可以看到,这一次成功重组了7个分片包,至此ip_reassembly测试结束。

下面是我做的测试及推断出的结论:

测试一: 慢速发送4个分片数据包,查看是否重组成功(现象:重组失败。 结论:超时原因导致重组失败)

测试二: 修改代码中frag_cycles值,将超时时间扩大100倍,然后再根据测试一的条件测试(现象:重组成功。 结论:超时时间理应控制很短,这里仅作为测试)

测试三: 不修改修改代码中frag_cycles值,快速发送4个分片数据包,查看是否重组成功(现象:重组成功。 结论:不超时的前提下可以重组4个分片)

测试四: 修改代码中frag_cycles值, 将超时时间扩大100倍,快速发送5个数据包,查看是否重组成功(现象:重组失败。 结论:分片数量过多导致分片失败)

测试五: 修改代码中frag_cycles值, 将超时时间扩大100倍,修改RTE_LIBRTE_IP_FRAG_MAX_FRAG值为8,快速发送5个数据包,查看是否重组成功(现象:重组失败。 结论:分片数量过多导致分片失败,进修改头文件中RTE_LIBRTE_IP_FRAG_MAX_FRAG值不能改正重组数据包个数)

测试六: 修改RTE_LIBRTE_IP_FRAG_MAX_FRAG值为8,重新编译DPDK,修改样例代码中frag_cycles值, 将超时时间扩大100倍,然后再编译测试代码,慢速发送5个数据包,查看是否重组成功(现象:重组成功。 结论:分片数量过多导致分片失败,需要修改RTE_LIBRTE_IP_FRAG_MAX_FRAG值之后重新编译dpdk

分片数据包下载链接:fragemetPcap

4、总结

实际项目中可能用不到IP组包功能,即使用到了实际上分片包的个数一般也就2个,很少情况下超过4个,文中的非正常测试也属于自己的胡思乱想,瞎搞一通!!

版权声明:本文为博主原创文章,遵循 CC 4.0 BY-SA 版权协议,转载请附上原文出处链接和本声明。
本文链接:https://blog.csdn.net/weixin_42571882/article/details/126411973

智能推荐

攻防世界_难度8_happy_puzzle_攻防世界困难模式攻略图文-程序员宅基地

文章浏览阅读645次。这个肯定是末尾的IDAT了,因为IDAT必须要满了才会开始一下个IDAT,这个明显就是末尾的IDAT了。,对应下面的create_head()代码。,对应下面的create_tail()代码。不要考虑爆破,我已经试了一下,太多情况了。题目来源:UNCTF。_攻防世界困难模式攻略图文

达梦数据库的导出(备份)、导入_达梦数据库导入导出-程序员宅基地

文章浏览阅读2.9k次,点赞3次,收藏10次。偶尔会用到,记录、分享。1. 数据库导出1.1 切换到dmdba用户su - dmdba1.2 进入达梦数据库安装路径的bin目录,执行导库操作  导出语句:./dexp cwy_init/[email protected]:5236 file=cwy_init.dmp log=cwy_init_exp.log 注释:   cwy_init/init_123..._达梦数据库导入导出

js引入kindeditor富文本编辑器的使用_kindeditor.js-程序员宅基地

文章浏览阅读1.9k次。1. 在官网上下载KindEditor文件,可以删掉不需要要到的jsp,asp,asp.net和php文件夹。接着把文件夹放到项目文件目录下。2. 修改html文件,在页面引入js文件:<script type="text/javascript" src="./kindeditor/kindeditor-all.js"></script><script type="text/javascript" src="./kindeditor/lang/zh-CN.js"_kindeditor.js

STM32学习过程记录11——基于STM32G431CBU6硬件SPI+DMA的高效WS2812B控制方法-程序员宅基地

文章浏览阅读2.3k次,点赞6次,收藏14次。SPI的详情简介不必赘述。假设我们通过SPI发送0xAA,我们的数据线就会变为10101010,通过修改不同的内容,即可修改SPI中0和1的持续时间。比如0xF0即为前半周期为高电平,后半周期为低电平的状态。在SPI的通信模式中,CPHA配置会影响该实验,下图展示了不同采样位置的SPI时序图[1]。CPOL = 0,CPHA = 1:CLK空闲状态 = 低电平,数据在下降沿采样,并在上升沿移出CPOL = 0,CPHA = 0:CLK空闲状态 = 低电平,数据在上升沿采样,并在下降沿移出。_stm32g431cbu6

计算机网络-数据链路层_接收方收到链路层数据后,使用crc检验后,余数为0,说明链路层的传输时可靠传输-程序员宅基地

文章浏览阅读1.2k次,点赞2次,收藏8次。数据链路层习题自测问题1.数据链路(即逻辑链路)与链路(即物理链路)有何区别?“电路接通了”与”数据链路接通了”的区别何在?2.数据链路层中的链路控制包括哪些功能?试讨论数据链路层做成可靠的链路层有哪些优点和缺点。3.网络适配器的作用是什么?网络适配器工作在哪一层?4.数据链路层的三个基本问题(帧定界、透明传输和差错检测)为什么都必须加以解决?5.如果在数据链路层不进行帧定界,会发生什么问题?6.PPP协议的主要特点是什么?为什么PPP不使用帧的编号?PPP适用于什么情况?为什么PPP协议不_接收方收到链路层数据后,使用crc检验后,余数为0,说明链路层的传输时可靠传输

软件测试工程师移民加拿大_无证移民,未受过软件工程师的教育(第1部分)-程序员宅基地

文章浏览阅读587次。软件测试工程师移民加拿大 无证移民,未受过软件工程师的教育(第1部分) (Undocumented Immigrant With No Education to Software Engineer(Part 1))Before I start, I want you to please bear with me on the way I write, I have very little gen...

随便推点

Thinkpad X250 secure boot failed 启动失败问题解决_安装完系统提示secureboot failure-程序员宅基地

文章浏览阅读304次。Thinkpad X250笔记本电脑,装的是FreeBSD,进入BIOS修改虚拟化配置(其后可能是误设置了安全开机),保存退出后系统无法启动,显示:secure boot failed ,把自己惊出一身冷汗,因为这台笔记本刚好还没开始做备份.....根据错误提示,到bios里面去找相关配置,在Security里面找到了Secure Boot选项,发现果然被设置为Enabled,将其修改为Disabled ,再开机,终于正常启动了。_安装完系统提示secureboot failure

C++如何做字符串分割(5种方法)_c++ 字符串分割-程序员宅基地

文章浏览阅读10w+次,点赞93次,收藏352次。1、用strtok函数进行字符串分割原型: char *strtok(char *str, const char *delim);功能:分解字符串为一组字符串。参数说明:str为要分解的字符串,delim为分隔符字符串。返回值:从str开头开始的一个个被分割的串。当没有被分割的串时则返回NULL。其它:strtok函数线程不安全,可以使用strtok_r替代。示例://借助strtok实现split#include <string.h>#include <stdio.h&_c++ 字符串分割

2013第四届蓝桥杯 C/C++本科A组 真题答案解析_2013年第四届c a组蓝桥杯省赛真题解答-程序员宅基地

文章浏览阅读2.3k次。1 .高斯日记 大数学家高斯有个好习惯:无论如何都要记日记。他的日记有个与众不同的地方,他从不注明年月日,而是用一个整数代替,比如:4210后来人们知道,那个整数就是日期,它表示那一天是高斯出生后的第几天。这或许也是个好习惯,它时时刻刻提醒着主人:日子又过去一天,还有多少时光可以用于浪费呢?高斯出生于:1777年4月30日。在高斯发现的一个重要定理的日记_2013年第四届c a组蓝桥杯省赛真题解答

基于供需算法优化的核极限学习机(KELM)分类算法-程序员宅基地

文章浏览阅读851次,点赞17次,收藏22次。摘要:本文利用供需算法对核极限学习机(KELM)进行优化,并用于分类。

metasploitable2渗透测试_metasploitable2怎么进入-程序员宅基地

文章浏览阅读1.1k次。一、系统弱密码登录1、在kali上执行命令行telnet 192.168.26.1292、Login和password都输入msfadmin3、登录成功,进入系统4、测试如下:二、MySQL弱密码登录:1、在kali上执行mysql –h 192.168.26.129 –u root2、登录成功,进入MySQL系统3、测试效果:三、PostgreSQL弱密码登录1、在Kali上执行psql -h 192.168.26.129 –U post..._metasploitable2怎么进入

Python学习之路:从入门到精通的指南_python人工智能开发从入门到精通pdf-程序员宅基地

文章浏览阅读257次。本文将为初学者提供Python学习的详细指南,从Python的历史、基础语法和数据类型到面向对象编程、模块和库的使用。通过本文,您将能够掌握Python编程的核心概念,为今后的编程学习和实践打下坚实基础。_python人工智能开发从入门到精通pdf

推荐文章

热门文章

相关标签