智能反射面| 关于UPA信道建模_uniform planar array-程序员宅基地

技术标签: 智能反射面  通信原理  

前言

这篇文章想讲一下 智能反射面中 UPA (uniform planar array)的信道建模。 之前在智能反射面| Matlab代码实现的信道仿真一文中, 很简略地给了一个基本的UPA仿真代码, 这篇更详细地说一下 关于 面天线 的建模。

当然了, UPA并不只使用于智能反射面中, 尽管在科研方向上, 为了简化问题, 在MIMO问题中大家假设的往往都是线天线阵(ULA), 但实际中往往都是二维的UPA天线。 而在智能反射面中, 作者们实在无法睁眼说瞎话地假设智能反射面是一个线阵了, 毕竟人家名字里都带着一个“面”字还是要“面子”的。 也因此,在IRS方向中, UPA阵列的信道建模更普遍。

结论

先说结论, 是对需要只需要答案而不求甚解的读者的尊重。

对于一个 P × Q P\times Q P×Q的UPA天线阵列, 即共有 P P P行, Q Q Q列天线。 则对于 ( θ , ϕ ) (\theta, \phi) (θ,ϕ)方向的响应可以写为( θ \theta θ为水平角, 被称为azimuth angle, ϕ \phi ϕ 为 仰角, 被称为 elevation angle) :
a ( θ , ϕ ) = 1 P Q [ 1 , ⋯   , e ȷ π ( p sin ⁡ θ sin ⁡ ϕ + q cos ⁡ ϕ ) , ⋯   e ȷ π ( ( Q − 1 ) sin ⁡ θ sin ⁡ ϕ + ( P − 1 ) cos ⁡ ϕ ) ] T (1) \begin{array}{r} \mathbf{a}(\theta, \phi)=\frac{1}{\sqrt{PQ}}\left[1, \cdots, e^{\jmath \pi(p \sin \theta \sin \phi+q \cos \phi)}, \cdots\right. \left.e^{\jmath \pi((\sqrt{Q}-1) \sin \theta \sin \phi+(\sqrt{P}-1) \cos \phi)}\right]^{T} \end{array} \tag{1} a(θ,ϕ)=PQ 1[1,,eȷπ(psinθsinϕ+qcosϕ),eȷπ((Q 1)sinθsinϕ+(P 1)cosϕ)]T(1)
其中 p p p q q q 代表了第 p p p行,第 q q q列的天线, 注意, 是从0行0列开始计数的。 另外需要注意的一点是, 这是默认天线以半波长为间隔。 如果你看到的指数项是类似于 e ȷ 2 π λ d e^{\jmath \frac{2\pi}{\lambda}d} eȷλ2πd 之类的形式, 其实是一样的, 因为我们一般默认 d = 1 2 λ d = \frac{1}{2}\lambda d=21λ

对于(1), 还有一个非常常用且笔者更推荐的形式:

a ( θ , ϕ ) = a y ( θ , ϕ ) ⊗ a z ( ϕ ) (2) \mathbf{a}(\theta, \phi)=\mathbf{a}_y(\theta, \phi) \otimes \mathbf{a}_z(\phi) \tag{2} a(θ,ϕ)=ay(θ,ϕ)az(ϕ)(2)
其中,
a y ( θ , ϕ ) ≜ 1 Q [ 1 , e j π sin ⁡ θ l sin ⁡ ϕ l , … , e j π ( Q − 1 ) sin ⁡ θ l sin ⁡ ϕ l ] T a z ( ϕ l ) ≜ 1 P [ 1 , e j π cos ⁡ ϕ l , … , e j π ( P − 1 ) cos ⁡ ϕ l ] T \mathbf{a}_{y}(\theta, \phi) \triangleq \frac{1}{\sqrt{Q}}[1, e^{\mathrm{j}\pi\sin\theta_l\sin\phi_l}, \dots, e^{\mathrm{j}\pi(Q-1)\sin\theta_l\sin\phi_l}]^T\\ \mathbf{a}_{z}(\phi_l) \triangleq \frac{1}{\sqrt{P}}[1, e^{\mathrm{j}\pi\cos\phi_l}, \dots, e^{\mathrm{j}\pi(P-1)\cos\phi_l}]^T ay(θ,ϕ)Q 1[1,ejπsinθlsinϕl,,ejπ(Q1)sinθlsinϕl]Taz(ϕl)P 1[1,ejπcosϕl,,ejπ(P1)cosϕl]T

这里显然(2)比(1)清爽了很多, 很容易验证, 两者是等价的。

有了天线响应, 那么信道也就非常容易建模了。 对于发送端和接收端都是UPA阵列的情况下, 多径信道可以写为

H = N r N t ∑ l = 0 L α l a r , l ( θ l , ϕ l ) a t , l H ( ψ l , γ l ) \mathbf{H}=\sqrt{N_{\mathrm{r}} N_{\mathrm{t}}} \sum_{l=0}^{L} \alpha_{l} \mathbf{a}_{\mathrm{r}, l}\left(\theta_{l}, \phi_{l}\right) \mathbf{a}_{\mathrm{t}, l}^{H}\left(\psi_{l}, \gamma_{l}\right) H=NrNt l=0Lαlar,l(θl,ϕl)at,lH(ψl,γl)
简而言之, 对于每一径,信道就是接收的 a \mathbf{a} a 与 发送端的 a \mathbf{a} a 的 共轭转置相乘, 再乘上一个标量系数。

UPA详细建模

(1)和(2)是怎么来的呢? 事实上, 他基于且必须基于下图中的建模:
在这里插入图片描述
如图:

  • 假设UPA建立在yz平面上, 且原点为UPA的左下角第一个元素。
  • θ \theta θ为用户投影到 x y xy xy平面后, 与 x x x轴夹角
  • ϕ \phi ϕ为用户与 z z z轴负半轴夹角。 可以这样理解: UPA天线的一列就是一条直线, 用户相当于一个点, 那么一条直线+线外的一个点构成了一个平面。 那么在这个平面上就是普通的ULA天线的情形。 那么决定这列天线响应的就是天线的入射角, 显然就是 ϕ \phi ϕ.

以这样的建模, 是可以推出 (1)和(2)式的。

怎么说呢? 以 ϕ \phi ϕ为例。 不考虑UPA的水平方向, 比如令 Q = 1 Q=1 Q=1, 也就是说只有一列, 此时UPA退化为一个ULA。 那么我们都知道, ULA的响应是什么呢? 是以入射波与ULA的夹角作为入射角。 那么在ULA的这个三维建模中, 这个入射角, 显然, 就是且必须是 用户 与 z z z轴负半轴的夹角。 因为UPA中的竖直方向其实就是 z z z轴, 那么竖直方向上的入射夹角就是用户与 z z z的夹角。 或者, 更容易理解的, z z z轴与用户, 一线一点构成一个平面, 这个平面就是ULA的平面。 那么谁是入射角, 一目了然。

至于 θ \theta θ角为什么这么建模? 推导太繁琐了, 不写出了, 按立体几何再利用远场近似就能推导。 这里想说的是其实很简单, (1)中为什么是 sin ⁡ θ \sin\theta sinθ而不是 cos ⁡ θ \cos\theta cosθ呢? 因为按照图中的建模, θ \theta θ角的范围显然是-90度到90度之间, 而这样 cos ⁡ θ \cos\theta cosθ的取值范围只有[0,1], 但 sin ⁡ θ \sin\theta sinθ的取值范围是[-1,1]。 无疑是后者。

响应求导

天线响应对于 θ \theta θ ϕ \phi ϕ的求导, 在推算CRLB或者优化的时候, 很有用, 那结果是什么呢? 利用(2)外加一个经典的结论:

d ( U ⊗ V ) = d ( U ) ⊗ V + U ⊗ d ( V ) \mathrm{d}(\mathbf{U}\otimes \mathbf{V}) = \mathrm{d}(\mathbf{U})\otimes \mathbf{V} +\mathbf{U}\otimes \mathrm{d}(\mathbf{V}) d(UV)=d(U)V+Ud(V)

结合(2), 很容易有:
∂ a ( θ , ϕ ) ∂ θ = ( j π cos ⁡ θ sin ⁡ ϕ [ 0 , 1 … , Q − 1 ] T ⊙ a y ( θ , ϕ ) ) ⊗ a z ( ϕ ) ∂ a ( θ , ϕ ) ∂ ϕ = ( j π sin ⁡ θ cos ⁡ ϕ [ 0 , 1 … , Q − 1 ] T ⊙ a y ( θ , ϕ ) ) ⊗ a z ( ϕ ) + a y ( θ , ϕ ) ⊗ ( − j π sin ⁡ ϕ [ 0 , 1 , … , P − 1 ] T ⊙ a z ( ϕ ) ) \frac{\partial\mathbf{a}(\theta,\phi)}{\partial\theta}=\left(\mathrm{j} \pi \cos \theta \sin \phi[0,1 \ldots, Q-1]^{T} \odot \mathbf{a}_{y}(\theta, \phi)\right) \otimes \mathbf{a}_{z}(\phi)\\ \frac{\partial\mathbf{a}(\theta,\phi)}{\partial\phi}=\begin{array}{l} \left(\mathrm{j} \pi \sin \theta \cos \phi[0,1 \ldots, Q-1]^{T} \odot \mathbf{a}_{y}(\theta, \phi)\right) \otimes \mathbf{a}_{z}(\phi) +\mathbf{a}_{y}(\theta, \phi) \otimes\left(-\mathrm{j} \pi \sin \phi[0,1, \ldots, P-1]^{T} \odot \mathbf{a}_{z}(\phi)\right) \end{array} θa(θ,ϕ)=(jπcosθsinϕ[0,1,Q1]Tay(θ,ϕ))az(ϕ)ϕa(θ,ϕ)=(jπsinθcosϕ[0,1,Q1]Tay(θ,ϕ))az(ϕ)+ay(θ,ϕ)(jπsinϕ[0,1,,P1]Taz(ϕ))
其中 ⊙ \odot 是哈达玛积。

版权声明:本文为博主原创文章,遵循 CC 4.0 BY-SA 版权协议,转载请附上原文出处链接和本声明。
本文链接:https://blog.csdn.net/weixin_39274659/article/details/111477860

智能推荐

什么是内部类?成员内部类、静态内部类、局部内部类和匿名内部类的区别及作用?_成员内部类和局部内部类的区别-程序员宅基地

文章浏览阅读3.4k次,点赞8次,收藏42次。一、什么是内部类?or 内部类的概念内部类是定义在另一个类中的类;下面类TestB是类TestA的内部类。即内部类对象引用了实例化该内部对象的外围类对象。public class TestA{ class TestB {}}二、 为什么需要内部类?or 内部类有什么作用?1、 内部类方法可以访问该类定义所在的作用域中的数据,包括私有数据。2、内部类可以对同一个包中的其他类隐藏起来。3、 当想要定义一个回调函数且不想编写大量代码时,使用匿名内部类比较便捷。三、 内部类的分类成员内部_成员内部类和局部内部类的区别

分布式系统_分布式系统运维工具-程序员宅基地

文章浏览阅读118次。分布式系统要求拆分分布式思想的实质搭配要求分布式系统要求按照某些特定的规则将项目进行拆分。如果将一个项目的所有模板功能都写到一起,当某个模块出现问题时将直接导致整个服务器出现问题。拆分按照业务拆分为不同的服务器,有效的降低系统架构的耦合性在业务拆分的基础上可按照代码层级进行拆分(view、controller、service、pojo)分布式思想的实质分布式思想的实质是为了系统的..._分布式系统运维工具

用Exce分析l数据极简入门_exce l趋势分析数据量-程序员宅基地

文章浏览阅读174次。1.数据源准备2.数据处理step1:数据表处理应用函数:①VLOOKUP函数; ② CONCATENATE函数终表:step2:数据透视表统计分析(1) 透视表汇总不同渠道用户数, 金额(2)透视表汇总不同日期购买用户数,金额(3)透视表汇总不同用户购买订单数,金额step3:讲第二步结果可视化, 比如, 柱形图(1)不同渠道用户数, 金额(2)不同日期..._exce l趋势分析数据量

宁盾堡垒机双因素认证方案_horizon宁盾双因素配置-程序员宅基地

文章浏览阅读3.3k次。堡垒机可以为企业实现服务器、网络设备、数据库、安全设备等的集中管控和安全可靠运行,帮助IT运维人员提高工作效率。通俗来说,就是用来控制哪些人可以登录哪些资产(事先防范和事中控制),以及录像记录登录资产后做了什么事情(事后溯源)。由于堡垒机内部保存着企业所有的设备资产和权限关系,是企业内部信息安全的重要一环。但目前出现的以下问题产生了很大安全隐患:密码设置过于简单,容易被暴力破解;为方便记忆,设置统一的密码,一旦单点被破,极易引发全面危机。在单一的静态密码验证机制下,登录密码是堡垒机安全的唯一_horizon宁盾双因素配置

谷歌浏览器安装(Win、Linux、离线安装)_chrome linux debian离线安装依赖-程序员宅基地

文章浏览阅读7.7k次,点赞4次,收藏16次。Chrome作为一款挺不错的浏览器,其有着诸多的优良特性,并且支持跨平台。其支持(Windows、Linux、Mac OS X、BSD、Android),在绝大多数情况下,其的安装都很简单,但有时会由于网络原因,无法安装,所以在这里总结下Chrome的安装。Windows下的安装:在线安装:离线安装:Linux下的安装:在线安装:离线安装:..._chrome linux debian离线安装依赖

烤仔TVの尚书房 | 逃离北上广?不如押宝越南“北上广”-程序员宅基地

文章浏览阅读153次。中国发达城市榜单每天都在刷新,但无非是北上广轮流坐庄。北京拥有最顶尖的文化资源,上海是“摩登”的国际化大都市,广州是活力四射的千年商都。GDP和发展潜力是衡量城市的数字指...

随便推点

java spark的使用和配置_使用java调用spark注册进去的程序-程序员宅基地

文章浏览阅读3.3k次。前言spark在java使用比较少,多是scala的用法,我这里介绍一下我在项目中使用的代码配置详细算法的使用请点击我主页列表查看版本jar版本说明spark3.0.1scala2.12这个版本注意和spark版本对应,只是为了引jar包springboot版本2.3.2.RELEASEmaven<!-- spark --> <dependency> <gro_使用java调用spark注册进去的程序

汽车零部件开发工具巨头V公司全套bootloader中UDS协议栈源代码,自己完成底层外设驱动开发后,集成即可使用_uds协议栈 源代码-程序员宅基地

文章浏览阅读4.8k次。汽车零部件开发工具巨头V公司全套bootloader中UDS协议栈源代码,自己完成底层外设驱动开发后,集成即可使用,代码精简高效,大厂出品有量产保证。:139800617636213023darcy169_uds协议栈 源代码

AUTOSAR基础篇之OS(下)_autosar 定义了 5 种多核支持类型-程序员宅基地

文章浏览阅读4.6k次,点赞20次,收藏148次。AUTOSAR基础篇之OS(下)前言首先,请问大家几个小小的问题,你清楚:你知道多核OS在什么场景下使用吗?多核系统OS又是如何协同启动或者关闭的呢?AUTOSAR OS存在哪些功能安全等方面的要求呢?多核OS之间的启动关闭与单核相比又存在哪些异同呢?。。。。。。今天,我们来一起探索并回答这些问题。为了便于大家理解,以下是本文的主题大纲:[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-JCXrdI0k-1636287756923)(https://gite_autosar 定义了 5 种多核支持类型

VS报错无法打开自己写的头文件_vs2013打不开自己定义的头文件-程序员宅基地

文章浏览阅读2.2k次,点赞6次,收藏14次。原因:自己写的头文件没有被加入到方案的包含目录中去,无法被检索到,也就无法打开。将自己写的头文件都放入header files。然后在VS界面上,右键方案名,点击属性。将自己头文件夹的目录添加进去。_vs2013打不开自己定义的头文件

【Redis】Redis基础命令集详解_redis命令-程序员宅基地

文章浏览阅读3.3w次,点赞80次,收藏342次。此时,可以将系统中所有用户的 Session 数据全部保存到 Redis 中,用户在提交新的请求后,系统先从Redis 中查找相应的Session 数据,如果存在,则再进行相关操作,否则跳转到登录页面。此时,可以将系统中所有用户的 Session 数据全部保存到 Redis 中,用户在提交新的请求后,系统先从Redis 中查找相应的Session 数据,如果存在,则再进行相关操作,否则跳转到登录页面。当数据量很大时,count 的数量的指定可能会不起作用,Redis 会自动调整每次的遍历数目。_redis命令

URP渲染管线简介-程序员宅基地

文章浏览阅读449次,点赞3次,收藏3次。URP的设计目标是在保持高性能的同时,提供更多的渲染功能和自定义选项。与普通项目相比,会多出Presets文件夹,里面包含着一些设置,包括本色,声音,法线,贴图等设置。全局只有主光源和附加光源,主光源只支持平行光,附加光源数量有限制,主光源和附加光源在一次Pass中可以一起着色。URP:全局只有主光源和附加光源,主光源只支持平行光,附加光源数量有限制,一次Pass可以计算多个光源。可编程渲染管线:渲染策略是可以供程序员定制的,可以定制的有:光照计算和光源,深度测试,摄像机光照烘焙,后期处理策略等等。_urp渲染管线

推荐文章

热门文章

相关标签