linux cgroup 死循环,Linux CGroup 基础-程序员宅基地

技术标签: linux cgroup 死循环  

CGroup V1

1. CGroup 概念Task: 任务,也就是进程,但这里的进程和我们通常意义上的 OS 进程有些区别,在后面会提到。

CGroup: 控制组,一个 CGroup 就是一组按照某种标准划分的Tasks。这里的标准就是 Subsystem 配置。换句话说,同一个CGroup 的 Tasks 在一个或多个 Subsystem 上使用同样的配置。

Hierarchy: 树形结构的 CGroup 层级,每个子 CGroup 节点会继承父 CGroup 节点的子系统配置,每个 Hierarchy 在初始化时会有默认的 CGroup(Root CGroup)。

Subsystem: 子系统,具体的物理资源配置,比如 CPU 使用率,内存占用,磁盘 IO 速率等。一个 Subsystem 只能附加在一个 Hierarchy 上,一个 Hierarchy 可以附加多个 Subsystem。

a8860a201b39238fb434052a5fe69cf8.png

2. CGroup 文件系统

在具体实现中,CGroup 通过虚拟文件系统实现,一个 CGroup 就是一个文件夹,Hierarchy 层级结构通过文件夹结构实现,而每个 CGroup 的 Subsystem 配置和 Tasks 则通过文件来配置。在 Ubuntu 下,可通过lssubsys -m(需要安装cgroup-tools包),查看已有的 Subsystem:

root# lssubsys -m

cpuset /sys/fs/cgroup/cpuset

cpu,cpuacct /sys/fs/cgroup/cpu,cpuacct

blkio /sys/fs/cgroup/blkio

memory /sys/fs/cgroup/memory

devices /sys/fs/cgroup/devices

freezer /sys/fs/cgroup/freezer

net_cls,net_prio /sys/fs/cgroup/net_cls,net_prio

perf_event /sys/fs/cgroup/perf_event

hugetlb /sys/fs/cgroup/hugetlb

pids /sys/fs/cgroup/pids

这些是 Ubuntu16.04 上已实现的 Subsystem 和对应 Hierarchy。各个Subsystem 的作用可参考 RedHat CGroup Doc。在其它系统,你可以需要手动挂载虚拟文件系统并建立 Subsystem 和 Hierarchy 的关系:

root# mount -t tmpfs cgroup_root /sys/fs/cgroup

root# mkdir /sys/fs/cgroup/cpu

root# mount -t cgroup cpu -ocpu /sys/fs/cgroup/cpu

/sys/fs/cgroup/cpu 即成为附加(attach)了 CPU Subsystem 的 Hierarchy 的根目录,即 Root CGroup,我们可以在该 CGroup 下创建一个 Child CGroup:

root# mkdir /sys/fs/cgroup/cpu/demo

root# ls /sys/fs/cgroup/cpu/demo

cgroup.clone_children cgroup.procs cpuacct.stat cpuacct.usage cpuacct.usage_percpu cpu.cfs_period_us cpu.cfs_quota_us cpu.shares cpu.stat notify_on_release tasks

在创建 CGroup 时,就已经生成了一堆文件,一个 CGroup 目录中的内容大概可以分为四类:

Subsystem Conf: 如附加了 CPU Subsystem 的 CGroup 目录下的 cpu* 文件均为 CPU Subsystem 配置

Tasks: 在该 CGroup 下的 Tasks,分为两个文件,tasks 和 cgroup.procs,两者记录的都是在该进程 PID 列表,但是有所区别。

CGroup Conf: CGroup 的一些通用配置,比如 notify_on_release 用于在 CGroup 结构变更时执行 release_agent 中的命令,cgroup.clone_children 用于在 Child CGroup 创建时,自动继承父 Child CGroup 的配置,目前只有 cpuset SubSystem 支持

Child CGroups: 除以上三种文件外的子目录,如Ubuntu16.04中,每个 Root CGroup 下都有个 docker 目录,它由 Docker 创建,用于管理Docker容器的资源配置

关于 tasks 和 cgroup.procs,网上很多文章将 cgroup 的 Task 简单解释为 OS 进程,这其实不够准确,更精确地说,cgroup.procs 文件中的 PID 列表才是我们通常意义上的进程列表,而 tasks 文件中包含的 PID 实际上可以是 Linux 轻量级进程(LWP) 的 PID,而由于 Linux pthread 库的线程实际上轻量级进程实现的(Linux 内核不支持真正的线程,可通过getconf GNU_LIBPTHREAD_VERSION查看使用的 pthread 线程库版本,Ubuntu16.04上是NPTL2.23(Native Posix Thread Lib),简单来说,Linux 进程主线程 PID = 进程 PID,而其它线程的 PID (LWP PID)则是独立分配的,可通过syscall(SYS_gettid)得到。LWP 在 ps 命令中默认是被隐藏的,在/proc/目录下可以看到。为了区分方便,我们将以 Proc 来表示传统意义上的进程,以 Thread 表示 LWP 进程。

我们可以通过 ps 命令的 -T 参数将 LWP 在 SPID 列显示出来:

root# ps -ef | wc -l

218

root# ps -efT | wc -l

816

root# ps -p 28051 -lfT

F S UID PID SPID PPID C PRI NI ADDR SZ WCHAN STIME TTY TIME CMD

0 Z root 28051 28051 26889 0 80 0 - 0 exit 10:30 pts/10 00:00:00 [a.out]

1 R root 28051 28054 26889 99 80 0 - 12409 - 10:30 pts/10 00:00:10 [a.out]

1 R root 28051 28055 26889 99 80 0 - 12409 - 10:30 pts/10 00:00:10 [a.out]

以上示例中,Proc 28051 下有两个 Thread (28054,28055),即开了两个子线程。总的来说,Linux 下这种通过 LWP 来实现线程的方式,在一些时候会给用户一些困惑,比如如果我 kill -9 28055(默认在 ps 下看不到),按照 POSIX 标准,28055 “线程”所在的进程会被 Kill掉,因此28051,28054,28055三个进程都会被杀掉,感觉就很诡异。感兴趣的可以看看这篇文章)。

当要向某个 CGroup 加入 Thread 时,将Thread PID 写入 tasks 或 cgroup.procs 即可,cgroup.procs 会自动变更为该 Task 所属的 Proc PID。如果要加入 Proc 时,则只能写入到 cgroup.procs 文件(未解),tasks 文件会自动更新为该 Proc 下所有的 Thread PID。可以通过cat /proc/PID/cgroup查看某个 Proc/Thread 的 CGroup 信息,

3. 一个实例1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50#define _GNU_SOURCE /* See feature_test_macros(7) */

#include

#include

#include

#include

#include

#include

#include

const int NUM_THREADS = 5;

void *thread_main(void *threadid)

{

long tid;

tid = (long)threadid;

printf("sub thread#%ld, pid #%ld!\n", tid, syscall(SYS_gettid));

int a=0;

while(1) {

a++;

}

pthread_exit(NULL);

}

int main (int argc, char *argv[])

{

printf("main thread, pid #%ld!\n", syscall(SYS_gettid));

int num_threads;

if (argc > 1){

num_threads = atoi(argv[1]);

}

if (num_threads<=0 || num_threads>=100){

num_threads = NUM_THREADS;

}

pthread_t* threads = (pthread_t*) malloc (sizeof(pthread_t)*num_threads);

int rc;

long t;

for(t=0; t

rc = pthread_create(&threads[t], NULL, thread_main, (void *)t);

if (rc){

printf("ERROR; return code from pthread_create() is %d\n", rc);

exit(-1);

}

}

pthread_exit(NULL);

free(threads);

}

这段代码简单创建了四个死循环线程,运行:

1

2

3

4

5

6root# gcc -pthread t.c && ./a.out

main thread, pid #30354

sub thread#0, pid #30355

sub thread#2, pid #30357

sub thread#3, pid #30358

sub thread#1, pid #30356

通过 htop/top(top 默认不会显示 LWP) 看到现在四个 CPU 会被吃满,为了限制资源,我们创建一个 CGroup:

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30root# mkdir /sys/fs/cgroup/cpu/wdj

# 创建 CGroup 之后,会自动生成相关文件

root# ls /sys/fs/cgroup/cpu/wdj/

cgroup.clone_children cgroup.procs cpuacct.stat cpuacct.usage cpuacct.usage_percpu cpu.cfs_period_us cpu.cfs_quota_us cpu.shares cpu.stat notify_on_release tasks

# 配置该 CGroup,CPU 使用率不能超过 50%

root# echo 50000 > /sys/fs/cgroup/cpu/wdj/cpu.cfs_quota_us

# 将 Proc PID 写入 procs

root# echo 30354 > /sys/fs/cgroup/cpu/wdj/cgroup.procs

# tasks 已经自动更新, # 此时 CPU 占用率会立即下降到 50%

root# cat /sys/fs/cgroup/cpu/wdj/tasks

30355

30356

30357

30358

# 同样的方式,再来限制下 CPU 核的使用

root# mkdir /sys/fs/cgroup/cpuset/wdj

# 限制只能使用 CPU 2,3 两个核

# 在使用前需要先执行,参考https://stackoverflow.com/questions/28348627/echo-tasks-gives-no-space-left-on-device-when-trying-to-use-cpuset

#root echo 0 > cpuset/wdj/cpuset.mems

#root echo 0 > cpuset/wdj/cpuset.cpus

echo 2,3 > /sys/fs/cgroup/cpuset/wdj/cpuset.cpu

# 这次我们将 Thread PID 写入 cgroup.procs

root# echo 30355 > /sys/fs/cgroup/cpu/wdj/cgroup.procs

# tasks 会自动更新为该 Proc下所有的 Thread PID

root# cat /sys/fs/cgroup/cpu/wdj/tasks

30355

30356

30357

30358

最终我们通过 htop 得到的效果如下:

399bff5033f19cd8777b1913695f9b2c.png

如果我们只将 Thread PID 如30356写入 /sys/fs/cgroup/cpu/wdj/tasks,则只会限制thread#1的CPU使用率。总结一下:

将 Thread PID 写入 tasks: 仅对该”线程”(LWP) 生效

将 Thread PID 写入 cgroup.procs: 会加入整个 Proc PID

将 Proc PID 写入 tasks: 没有效果,写不进去

将 Proc PID 写入 cgroup.procs: 会加入整个 Proc PID

表现有点怪异,还没找到具体原因,总的来说,目前的 CGroup 还有点乱:

Subsystem, Hierarchy, CGroup 三者的结构有点乱,将对进程的分组和对资源的控制混在了一起

由于 Linux 通过 LWP 实现 Thread,导致 CGroup 看起来可以对线程实现控制,但这方面机制不够健全,比如前面提到的加入机制

CGroup V2

CGroup V2 在 Linux Kernel 4.5中被引入,并且考虑到其它已有程序的依赖,V2 会和 V1 并存几年。针对于 CGroup V1 中 Subsystem, Herarchy, CGroup 的关系混乱,CGroup V2 中,引入 unified hierarchy 的概念,即只有一个 Hierarchy,仍然通过 mount 来挂载 CGroup V2:

mount -t cgroup2 none $MOUNT_POINT

挂载完成之后,目录下会有三个 CGroup 核心文件:

cgroup.controllers: 该文件列出当前 CGroup 支持的所有 Controller,如: cpu io memory

cgroup.procs: 在刚挂载时,Root CGroup 目录下的 cgroup.procs 文件中会包含系统当前所有的Proc PID(除了僵尸进程)。同样,可以通过将 Proc PID 写入 cgroup.procs 来将 Proc 加入到 CGroup

cgroup.subtree_control: 用于控制该 CGroup 下 Controller 开关,只有列在 cgroup.controllers 中的 Controller 才可以被开启,默认情况下所有的 Controller 都是关闭的。

这三个文件在所有的 CGroup 中都会生成,除此之外,在非 Root CGroup 下,还会有一个 cgroup.events 文件,该文件的 populated 字段会指出当前 CGroup 下的所有存活的 Proc PID,为1则表示其下存活的 Proc PID 数量>1,否则populated为0。这用于 CGroup V1的 release_agent 等事件通知,因为当最后一个进程退出 CGroup 时,cgroup.events 文件会被修改,从而触发事件。

# 查看当前 CGroup 支持的所有 Controllers

root# cat cgroup.controllers

cpu io memory

# 开启和关闭 Controller

root# echo "+cpu +memory -io" > cgroup.subtree_control

在 CGroup V2 中,A CGroup 开启了某个 Controller,则其直接子 CGroup B会生成对应的 Controller 接口文件(如 cpu.cfs_quota_us),并且B CGroup 的 cgroup.controllers 会更新。B也可以选择开启或关闭该 Controller,但影响的是 B 的直接子 CGroup。并且只有没有 Tasks 的 CGroup 即中间节点可以开关 Controller,只有叶子节点(和根节点)可以执行资源配置。这样每个节点要么控制子 CGroup 的 Controller 开关(中间节点),要么控制其下 Tasks 的资源配置(叶子节点),结构更清晰。

另外,CGroup V2 去掉了 Tasks 文件,增加了 cgroup.threads 文件,用于管理 LWP(仍然没有放弃对”线程”的支持),但语义上会清晰一些。

站在进程的角度来说,在挂载 CGroup V2时,所有已有Live Proc PID 都会加入到 Root CGroup,之后所有新创建的进程都会自动加入到父进程所属的 CGroup,由于 V2 只有一个 Hierarchy,因此一个进程同一时间只会属于一个 CGroup:

root# cat /proc/842/cgroup

...

0::/test-cgroup/test-cgroup-nested

总的来说,CGroup V2去掉了多个 Hierarchy 结构,使用 unified Hierarchy,对 Hierarchy 内部层级结构作出一些限制以保证层级逻辑清晰,并且优化了 CGroup 的文件组织(如 cgroup.events, cgroup.threads)。由于目前手头暂时没有 Kernel 4.5,只能通过文档大概了解下,还是要找机会实际体验一下。

Reference:

版权声明:本文为博主原创文章,遵循 CC 4.0 BY-SA 版权协议,转载请附上原文出处链接和本声明。
本文链接:https://blog.csdn.net/weixin_32083569/article/details/116921382

智能推荐

linux里面ping www.baidu.com ping不通的问题_linux桥接ping不通baidu-程序员宅基地

文章浏览阅读3.2w次,点赞16次,收藏90次。对于这个问题我也是从网上找了很久,终于解决了这个问题。首先遇到这个问题,应该确认虚拟机能不能正常的上网,就需要ping 网关,如果能ping通说明能正常上网,不过首先要用命令route -n来查看自己的网关,如下图:第一行就是默认网关。现在用命令ping 192.168.1.1来看一下结果:然后可以看一下电脑上面百度的ip是多少可以在linux里面ping 这个IP,结果如下:..._linux桥接ping不通baidu

android 横幅弹出权限,有关 android studio notification 横幅弹出的功能没有反应-程序员宅基地

文章浏览阅读512次。小妹在这里已经卡了2-3天了,研究了很多人的文章,除了低版本api 17有成功外,其他的不是channel null 就是没反应 (channel null已解决)拜托各位大大,帮小妹一下,以下是我的程式跟 gradle, 我在这里卡好久又没有人可问(哭)![image](/img/bVcL0Qo)public class MainActivity extends AppCompatActivit..._android 权限申请弹窗 横屏

CNN中padding参数分类_cnn “相同填充”(same padding)-程序员宅基地

文章浏览阅读1.4k次,点赞4次,收藏6次。valid padding(有效填充):完全不使用填充。half/same padding(半填充/相同填充):保证输入和输出的feature map尺寸相同。full padding(全填充):在卷积操作过程中,每个像素在每个方向上被访问的次数相同。arbitrary padding(任意填充):人为设定填充。..._cnn “相同填充”(same padding)

Maven的基础知识,java技术栈-程序员宅基地

文章浏览阅读790次,点赞29次,收藏28次。手绘了下图所示的kafka知识大纲流程图(xmind文件不能上传,导出图片展现),但都可提供源文件给每位爱学习的朋友一个人可以走的很快,但一群人才能走的更远。不论你是正从事IT行业的老鸟或是对IT行业感兴趣的新人,都欢迎扫码加入我们的的圈子(技术交流、学习资源、职场吐槽、大厂内推、面试辅导),让我们一起学习成长![外链图片转存中…(img-Qpoc4gOu-1712656009273)][外链图片转存中…(img-bSWbNeGN-1712656009274)]

getFullYear()和getYear()有什么区别_getyear和getfullyear-程序员宅基地

文章浏览阅读469次。Date对象取得年份有getYear和getFullYear两种方法经 测试var d=new Date;alert(d.getYear())在IE中返回 2009,在Firefox中会返回109。经查询手册,getYear在Firefox下返回的是距1900年1月1日的年份,这是一个过时而不被推荐的方法。而alert(d.getFullYear())在IE和FF中都会返回2009。因此,无论何时都应使用getFullYear来替代getYear方法。例如:2016年用 getFullYea_getyear和getfullyear

Unix传奇 (上篇)_unix传奇pdf-程序员宅基地

文章浏览阅读182次。Unix传奇(上篇) 陈皓 了解过去,我们才能知其然,更知所以然。总结过去,我们才会知道我们明天该如何去规划,该如何去走。在时间的滚轮中,许许多的东西就像流星一样一闪而逝,而有些东西却能经受着时间的考验散发着经久的魅力,让人津津乐道,流传至今。要知道明天怎么去选择,怎么去做,不是盲目地跟从今天各种各样琳琅满目前沿技术,而应该是去 —— 认认真真地了解和回顾历史。 Unix是目前还在存活的操作系_unix传奇pdf

随便推点

ACwing 哈希算法入门:_ac算法 哈希-程序员宅基地

文章浏览阅读308次。哈希算法:将字符串映射为数字形式,十分巧妙,一般运用为进制数,进制据前人经验,一般为131,1331时重复率很低,由于字符串的数字和会很大,所以一般为了方便,一般定义为unsigned long long,爆掉时,即为对 2^64 取模,可以对于任意子序列的值进行映射为数字进而进行判断入门题目链接:AC代码:#include<bits/stdc++.h>using na..._ac算法 哈希

VS配置Qt和MySQL_在vs中 如何装qt5sqlmysql模块-程序员宅基地

文章浏览阅读952次,点赞13次,收藏27次。由于觉得Qt的编辑界面比较丑,所以想用vs2022的编辑器写Qt加MySQL的项目。_在vs中 如何装qt5sqlmysql模块

【渝粤题库】广东开放大学 互联网营销 形成性考核_画中画广告之所以能有较高的点击率,主要由于它具有以下特点-程序员宅基地

文章浏览阅读1k次。选择题题目:下面的哪个调研内容属于经济环境调研?()题目:()的目的就是加强与客户的沟通,它是是网络媒体也是网络营销的最重要特性。题目:4Ps策略中4P是指产品、价格、顾客和促销。题目:网络市场调研是目前最为先进的市场调研手段,没有任何的缺点或不足之处。题目:市场定位的基本参数有题目:市场需求调研可以掌握()等信息。题目:在开展企业网站建设时应做好以下哪几个工作。()题目:对企业网站首页的优化中,一定要注意下面哪几个方面的优化。()题目:()的主要作用是增进顾客关系,提供顾客服务,提升企业_画中画广告之所以能有较高的点击率,主要由于它具有以下特点

爬虫学习(1):urlopen库使用_urlopen the read operation timed out-程序员宅基地

文章浏览阅读1k次,点赞2次,收藏5次。以爬取CSDN为例子:第一步:导入请求库第二步:打开请求网址第三步:打印源码import urllib.requestresponse=urllib.request.urlopen("https://www.csdn.net/?spm=1011.2124.3001.5359")print(response.read().decode('utf-8'))结果大概就是这个样子:好的,继续,看看打印的是什么类型的:import urllib.requestresponse=urllib.r_urlopen the read operation timed out

分享读取各大主流邮箱通讯录(联系人)、MSN好友列表的的功能【升级版(3.0)】-程序员宅基地

文章浏览阅读304次。修正sina.com/sina.cn邮箱获取不到联系人,并精简修改了其他邮箱代码,以下就是升级版版本的介绍:完整版本,整合了包括读取邮箱通讯录、MSN好友列表的的功能,目前读取邮箱通讯录支持如下邮箱:gmail(Y)、hotmail(Y)、 live(Y)、tom(Y)、yahoo(Y)(有点慢)、 sina(Y)、163(Y)、126(Y)、yeah(Y)、sohu(Y) 读取后可以发送邮件(完..._通讯录 应用读取 邮件 的相关

云计算及虚拟化教程_云计算与虚拟化技术 教改-程序员宅基地

文章浏览阅读213次。云计算及虚拟化教程学习云计算、虚拟化和计算机网络的基本概念。此视频教程共2.0小时,中英双语字幕,画质清晰无水印,源码附件全课程英文名:Cloud Computing and Virtualization An Introduction百度网盘地址:https://pan.baidu.com/s/1lrak60XOGEqMOI6lXYf6TQ?pwd=ns0j课程介绍:https://www.aihorizon.cn/72云计算:概念、定义、云类型和服务部署模型。虚拟化的概念使用 Type-2 Hyperv_云计算与虚拟化技术 教改