Android性能优化一绘制原理分析_surfaceflinger优化-程序员宅基地

技术标签: Android 性能优化  卡顿原因  android  绘制优化  绘制分析  

Android应用启动慢,使用时经常卡顿,是非常影响用户体验的,应该尽量避免出现。

1.卡顿的分类

按照场景分可以分为:

  • UI绘制
    • 绘制
    • 刷新
  • 应用启动
    • 安装启动
    • 冷启动
    • 热启动
  • 页面跳转
    • 页面间切换
    • 前后台切换
  • 事件响应
    • 按键
    • 系统事件
    • 滑动

2.卡顿的原因

这4种卡顿场景的根本原因可以分成两大类:

界面绘制:主要原因是绘制的层级深页面复杂刷新不合理,由于这些原因导致卡顿的场景更多出现在UI和启动后的初始界面以及跳转到页面的绘制上。

数据处理:导致这种卡顿场景的原因是数据处理量太大,一般分为三种情况,一是数据处理在UI线程(这种应该避免),二是数据处理占用CPU高,导致主线程拿不到时间片,三是内存增加导致GC频繁,从而引起卡顿。

3.Android系统的显示原理

整个显示系统很复杂,对于性能优化了解整体流程就可以。

Android的显示过程可以简单概括为:Android应用程序把经过测量、布局、绘制后的surface缓存数据,通过SurfaceFlinger把数据渲染到显示屏幕上,通过Android的刷新机制来刷新数据。也就是说应用层负责绘制系统层负责渲染,通过进程间通信把应用层需要绘制的数据传递到系统层服务,系统层服务通过刷新机制把数据更新到屏幕。

Android的图形显示系统采用的是Client/Server架构,SurfaceFlinger是一个c++文件(Server端),源码路径:frameworks/native/services/surfaceflinger/SurfaceFlinger.cpp,感兴趣可以去深入分析研究。

Client端代码分为两部分,一部分是由Java提供给应用使用的API,另一部分则是由C++写成的底层具体实现。

4.绘制的原理

绘制任务是由应用发起的,最终通过系统层绘制到硬件屏幕上,应用进程绘制好后,通过跨进程通信机制把需要显示的数据传到系统层,由系统层中的SurfaceFlinger服务绘制到屏幕上

在Android的每个View绘制中有三个核心步骤:通过Measure和Layout来确定当前需要绘制的View所在的大小和位置,通过绘制(Draw)到surface。

在Android系统中整体的绘图源码是在ViewRootImp类(源码位置:frameworks/base/core/java/android/view/ViewRootImpl.java)的**performTraversals()**方法,通过这个方法可以看出Measure和Layout都是递归来获取View的大小和位置,并且以深度作为优先级。可以看出,层级越深,元素越多,耗时也就越长

(1)应用层:

Measure:用深度优先原则递归得到所有视图(View)的宽、高;获取当前View的正确宽度childWidthMeasureSpec和高度childHeightMeasureSpec之后,可以调用它的成员函数Measure来设置它的大小。如果当前正在测量的子视图child是一个视图容器,那么它又会重复执行操作,直到它的所有子孙视图的大小都测量完成为止。

Layout:用深度优先原则递归得到所有视图(View)的位置;当一个子View在应用程序窗口左上角的位置确定之后,再结合它在前面测量过程中确定的宽度和高度,就可以完全确定它在应用程序窗口中的布局。

Draw:目前Android支持了两种绘制方式:软件绘制(CPU)和硬件加速(GPU),其中硬件加速在Android 3.0开始已经全面支持,,硬件加速在UI的显示和绘制的效率远远高于CPU绘制,但硬件加速也存在明显的缺点:

  • 耗电:GPU的功耗比CPU高

  • 兼容问题:某些接口和函数不支持硬件加速。

  • 内存大:使用OpenGL的接口至少需要8MB内存。

(2)系统层

真正把需要显示的数据渲染到屏幕上,是通过系统级进程中的SurfaceFlinger服务来实现的。

SurfaceFlinger主要负责的任务:

  • 响应客户端事件,创建Layer与客户端的Surface建立连接。
  • 接收客户端数据及属性,修改Layer属性,如尺寸、颜色、透明度等。
  • 将创建的Layer内容刷新到屏幕上。
  • 维持Layer的序列,并对Layer最终输出做出裁剪计算。。

既然两个不同进程,那么肯定需要一个跨进程的通信机制来实现数据传输,在Android的显示系统,使用了Android的匿名共享内存:SharedClient,每一个应用和SurfaceFlinger之间都会创建一个SharedClient,在每个SharedClient中,最多可以创建31个SharedBufferStack,每个Surface都对应一个SharedBufferStack,也就是一个window。

在这里插入图片描述

一个SharedClient对应一个Android应用程序,而一个Android应用程序可能包含多个窗口,即Surface。也就是说SharedClient包含的是SharedBufferStack的集合。因为最多可以创建31个SharedBufferStack,也就是说一个Android应用程序最多可以包含31个窗口,同时每个SharedBufferStack中又包含了两个(低于4.1版本)或者三个(4.1及以上版本)缓冲区,即显示刷新机制中会提到的双缓冲和三重缓冲技术。

总结起来显示整体流程分为三个模块:1.应用层绘制到缓存区,2.SurfaceFlinger把缓存区数据渲染到屏幕,3.由于是两个不同的进程,所以使用Android的匿名共享内存SharedClient缓存需要显示的数据来达到目的。

cpu和gpu是如何系统工作的呢?

绘制过程首先是CPU准备数据,通过Driver层把数据交给CPU渲染,其中CPU主要负责Measure、Layout、Record、Execute的数据计算工作GPU负责Rasterization(栅格化)、渲染。由于图形API不允许CPU直接与GPU通信,而是通过中间的一个图形驱动层(GraphicsDriver)来连接这两部分。图形驱动维护了一个队列,CPU把display list添加到队列中,GPU从这个队列取出数据进行绘制,最终才在显示屏上显示出来

5.FPS帧率

到底绘制一个单元多长时间才是合理的,需要FPS。FPS(Frames PerSecond)表示每秒传递的帧数。在理想情况下,60 FPS就感觉不到卡,这意味着每个绘制时长应该在16ms以内。

Android系统很有可能无法及时完成那些复杂的界面渲染操作。Android系统每隔16ms发出VSYNC信号,触发对UI进行渲染,如果每次渲染都成功,这样就能够达到流畅的画面所需的60FPS。即为了实现60FPS,就意味着程序的大多数绘制操作都必须在16ms内完成。

如果某个操作花费的时间是24ms,系统在得到VSYNC信号时就无法进行正常渲染,这样就发生了丢帧现象。那么用户在32ms内看到的会是同一帧画面。有很多原因可以导致CPU或者GPU负载过重从而出现丢帧现象:可能是Layout太过复杂,无法在16ms内完成渲染;可能是UI上有层叠太多的绘制单元;还有可能是**动画执行的次数过多。**最终的数据是刷新机制通过系统去刷新数据,刷新不及时也是引起卡顿的一个主要原因

6.双缓冲、VSYNC、Choreographer解释

双缓冲:显示内容的数据内存,为什么要用双缓冲,我们知道在Linux上通常使用Framebuffer来做显示输出,当用户进程更新Framebuffer中的数据后,显示驱动会把Framebuffer中每个像素点的值更新到屏幕,但这样会带来一个问题,如果上一帧的数据还没有显示完,Framebuffer中的数据又更新了,就会带来残影的问题,给用户直观的感觉就会有闪烁感,所以普遍采用了双缓冲技术。双缓冲意味着要使用两个缓冲区(在SharedBufferStack中),其中一个称为Front Buffer,另外一个称为Back Buffer。UI总是先在Back Buffer中绘制,然后再和Front Buffer交换,渲染到显示设备中。即只有当另一个buffer的数据准备好后,通过io_ctrl来通知显示设备切换Buffer。

VSYNC:只有当另一个buffer准备好后,才能通知刷新,这就需要CPU以主动查询的方式来保证数据是否准备好,因为这种机制效率很低,所以引入了VSYNC。VSYNC是VerticalSynchronization(垂直同步)的缩写,可以简单地把它认为是一种定时中断,一旦收到VSYNC中断,CPU就开始处理各帧数据。

Choreographer:收到VSYNC信号时,调用用户设置的回调函数。一共有以下三种类型的回调:

  • CALLBACK_INPUT:优先级最高,与输入事件有关。
  • CALLBACK_ANIMATION:第二优先级,与动画有关。
  • CALLBACK_TRAVERSAL:最低优先级,与UI控件绘制有关。

7.卡顿的根本原因

  • 绘制任务太重,绘制一帧内容耗时太长。
  • 主线程太忙了,导致VSync信号来时还没有准备好数据导致丢帧。

8.主线程应该负责什么才是合理的

  • UI生命周期控制
  • 系统事件处理
  • 消息处理
  • 界面绘制
  • 界面刷新

除了这些以外,尽量避免将其他处理放到主线程中,特别是复杂的数据计算和网络请求。

版权声明:本文为博主原创文章,遵循 CC 4.0 BY-SA 版权协议,转载请附上原文出处链接和本声明。
本文链接:https://blog.csdn.net/u014078003/article/details/123946286

智能推荐

稀疏编码的数学基础与理论分析-程序员宅基地

文章浏览阅读290次,点赞8次,收藏10次。1.背景介绍稀疏编码是一种用于处理稀疏数据的编码技术,其主要应用于信息传输、存储和处理等领域。稀疏数据是指数据中大部分元素为零或近似于零的数据,例如文本、图像、音频、视频等。稀疏编码的核心思想是将稀疏数据表示为非零元素和它们对应的位置信息,从而减少存储空间和计算复杂度。稀疏编码的研究起源于1990年代,随着大数据时代的到来,稀疏编码技术的应用范围和影响力不断扩大。目前,稀疏编码已经成为计算...

EasyGBS国标流媒体服务器GB28181国标方案安装使用文档-程序员宅基地

文章浏览阅读217次。EasyGBS - GB28181 国标方案安装使用文档下载安装包下载,正式使用需商业授权, 功能一致在线演示在线API架构图EasySIPCMSSIP 中心信令服务, 单节点, 自带一个 Redis Server, 随 EasySIPCMS 自启动, 不需要手动运行EasySIPSMSSIP 流媒体服务, 根..._easygbs-windows-2.6.0-23042316使用文档

【Web】记录巅峰极客2023 BabyURL题目复现——Jackson原生链_原生jackson 反序列化链子-程序员宅基地

文章浏览阅读1.2k次,点赞27次,收藏7次。2023巅峰极客 BabyURL之前AliyunCTF Bypassit I这题考查了这样一条链子:其实就是Jackson的原生反序列化利用今天复现的这题也是大同小异,一起来整一下。_原生jackson 反序列化链子

一文搞懂SpringCloud,详解干货,做好笔记_spring cloud-程序员宅基地

文章浏览阅读734次,点赞9次,收藏7次。微服务架构简单的说就是将单体应用进一步拆分,拆分成更小的服务,每个服务都是一个可以独立运行的项目。这么多小服务,如何管理他们?(服务治理 注册中心[服务注册 发现 剔除])这么多小服务,他们之间如何通讯?这么多小服务,客户端怎么访问他们?(网关)这么多小服务,一旦出现问题了,应该如何自处理?(容错)这么多小服务,一旦出现问题了,应该如何排错?(链路追踪)对于上面的问题,是任何一个微服务设计者都不能绕过去的,因此大部分的微服务产品都针对每一个问题提供了相应的组件来解决它们。_spring cloud

Js实现图片点击切换与轮播-程序员宅基地

文章浏览阅读5.9k次,点赞6次,收藏20次。Js实现图片点击切换与轮播图片点击切换<!DOCTYPE html><html> <head> <meta charset="UTF-8"> <title></title> <script type="text/ja..._点击图片进行轮播图切换

tensorflow-gpu版本安装教程(过程详细)_tensorflow gpu版本安装-程序员宅基地

文章浏览阅读10w+次,点赞245次,收藏1.5k次。在开始安装前,如果你的电脑装过tensorflow,请先把他们卸载干净,包括依赖的包(tensorflow-estimator、tensorboard、tensorflow、keras-applications、keras-preprocessing),不然后续安装了tensorflow-gpu可能会出现找不到cuda的问题。cuda、cudnn。..._tensorflow gpu版本安装

随便推点

物联网时代 权限滥用漏洞的攻击及防御-程序员宅基地

文章浏览阅读243次。0x00 简介权限滥用漏洞一般归类于逻辑问题,是指服务端功能开放过多或权限限制不严格,导致攻击者可以通过直接或间接调用的方式达到攻击效果。随着物联网时代的到来,这种漏洞已经屡见不鲜,各种漏洞组合利用也是千奇百怪、五花八门,这里总结漏洞是为了更好地应对和预防,如有不妥之处还请业内人士多多指教。0x01 背景2014年4月,在比特币飞涨的时代某网站曾经..._使用物联网漏洞的使用者

Visual Odometry and Depth Calculation--Epipolar Geometry--Direct Method--PnP_normalized plane coordinates-程序员宅基地

文章浏览阅读786次。A. Epipolar geometry and triangulationThe epipolar geometry mainly adopts the feature point method, such as SIFT, SURF and ORB, etc. to obtain the feature points corresponding to two frames of images. As shown in Figure 1, let the first image be ​ and th_normalized plane coordinates

开放信息抽取(OIE)系统(三)-- 第二代开放信息抽取系统(人工规则, rule-based, 先抽取关系)_语义角色增强的关系抽取-程序员宅基地

文章浏览阅读708次,点赞2次,收藏3次。开放信息抽取(OIE)系统(三)-- 第二代开放信息抽取系统(人工规则, rule-based, 先关系再实体)一.第二代开放信息抽取系统背景​ 第一代开放信息抽取系统(Open Information Extraction, OIE, learning-based, 自学习, 先抽取实体)通常抽取大量冗余信息,为了消除这些冗余信息,诞生了第二代开放信息抽取系统。二.第二代开放信息抽取系统历史第二代开放信息抽取系统着眼于解决第一代系统的三大问题: 大量非信息性提取(即省略关键信息的提取)、_语义角色增强的关系抽取

10个顶尖响应式HTML5网页_html欢迎页面-程序员宅基地

文章浏览阅读1.1w次,点赞6次,收藏51次。快速完成网页设计,10个顶尖响应式HTML5网页模板助你一臂之力为了寻找一个优质的网页模板,网页设计师和开发者往往可能会花上大半天的时间。不过幸运的是,现在的网页设计师和开发人员已经开始共享HTML5,Bootstrap和CSS3中的免费网页模板资源。鉴于网站模板的灵活性和强大的功能,现在广大设计师和开发者对html5网站的实际需求日益增长。为了造福大众,Mockplus的小伙伴整理了2018年最..._html欢迎页面

计算机二级 考试科目,2018全国计算机等级考试调整,一、二级都增加了考试科目...-程序员宅基地

文章浏览阅读282次。原标题:2018全国计算机等级考试调整,一、二级都增加了考试科目全国计算机等级考试将于9月15-17日举行。在备考的最后冲刺阶段,小编为大家整理了今年新公布的全国计算机等级考试调整方案,希望对备考的小伙伴有所帮助,快随小编往下看吧!从2018年3月开始,全国计算机等级考试实施2018版考试大纲,并按新体系开考各个考试级别。具体调整内容如下:一、考试级别及科目1.一级新增“网络安全素质教育”科目(代..._计算机二级增报科目什么意思

conan简单使用_apt install conan-程序员宅基地

文章浏览阅读240次。conan简单使用。_apt install conan