基于多元宇宙算法优化的广义回归神经网络(GRNN)预测-程序员宅基地

技术标签: 算法  机器学习  # 广义回归神经网络(GRNN)  神经网络  智能优化算法应用  回归  

基于多元宇宙算法优化的广义回归神经网络(GRNN)预测


摘要:本文介绍基于多元宇宙算法优化的广义神经网络(GRNN)预测,并将其应用于货物量预测

1.GRNN 神经网络概述

广义回归神经网络 CGRNN, Generalized Regression Neural Network)是美国学者 Don-aid F. Specht 在 1991 年提出的,它是径向基神经网络的一种。 GRNN 具有很强的非线性映射能力和柔性网络结构以及高度的容错性和鲁棒性,适用于解决非线性问题。 GRNN在逼近 能力和学习速度上较 RBF 网络有更强的优势,网络最后收敛于样本量积聚较多的优化回归 面,并且在样本数据较少时,预测效果也好。此外,网络还可以处理不稳定的数据。因此, GRNN 在信号过程、结构分析、教育产业、能源、食品科学、控制决策系统、药物设计、金融领域、生物工程等各个领域得到了广泛的应用 。

2.GRNN 的网络结构

GRNN 在结构上与 RBF 网络较为相似。它由四层构成,如图1所示,分别为输入层(input layer)、模式层( pattern layer)、求和层 ( summation layer)和输出层( output layer)。对 应网络输入 X = [ x 1 , x 2 , . . . , x n ] T X = [x_1,x_2,...,x_n]^T X=[x1,x2,...,xn]T,其输出为 Y = [ y 1 , y 2 , . . . , y n ] T Y = [y_1,y_2,...,y_n]^T Y=[y1,y2,...,yn]T

在这里插入图片描述

图1 .GRNN网络结构

(1)输入层

输入层神经元的数目等于学习样本中输入向量的维数,各神经元是简单的分布单元,直接将输入变量传递给模式层。

(2)模式层

模式层神经元数目等于学习样本的数目 η ,各神经元对应不 同的样本,模式层神经元传递函数为:
p i = e x p [ − ( X − X i ) T ( X − X i ) 2 σ 2 ] i = 1 , 2 , . . . , n (1) p_i = exp[-\frac{(X-X_i)^T(X-X_i)}{2\sigma^2}] i =1,2,...,n \tag{1} pi=exp[2σ2(XXi)T(XXi)]i=1,2,...,n(1)
神经元 i i i 的输出为输入变量与其对应的样本 X X X 之间 Euclid 距离平方的指数平方 D i 2 = ( X − X i ) T ( X − X i ) D_i^2= (X-X_i)^T(X-X_i ) Di2(XXi)T(XXi 的指数形式 。式中, X X X 为网络输入变量; X i X_i Xi 为第 i 个神经元对应的学习样本。

(3)求和层

求和层中使用两种类型神经元进行求和。

一类的计算公式为 ∑ i = 1 n e x p [ − ( X − X i ) T ( X − X i ) 2 σ 2 ] \sum_{i=1}^n exp[-\frac{(X-X_i)^T(X-X_i)}{2\sigma^2}] i=1nexp[2σ2(XXi)T(XXi)],它对所有模式层神经元的输出进行算术求和,其模式层与各神经元的连接权值为1 ,传递函数为:
S D = ∑ i = 1 n P i (2) S_D = \sum_{i=1}^nP_i\tag{2} SD=i=1nPi(2)
另 一类计算公式为 ∑ i = 1 n Y i e x p [ − ( X − X i ) T ( X − X i ) 2 σ 2 ] \sum_{i=1}^nY_i exp[-\frac{(X-X_i)^T(X-X_i)}{2\sigma^2}] i=1nYiexp[2σ2(XXi)T(XXi)],它对所有模式层的神经元进行加权求和,模式层中第 i 个神经元与求和层中第 j 个分子求和神经元之间的连接权值为第 i 个输 出样本 Y i Y_i Yi中的第 j 个元素,传递函数为:
S N j = ∑ i = 1 n y i j P i , j = 1 , 2 , . . . , k (3) S_{Nj} = \sum_{i=1}^n y_{ij}P_i ,j = 1,2,...,k\tag{3} SNj=i=1nyijPi,j=1,2,...,k(3)
(4)输出层

输出层中的神经元数目等于学习样本中输出向量的维数h ,各神经元将求和层的输出相除 , 神经元 j 的输出对应估计结果Y( X) 的第 j 个元素,即:
y j = S N j S D , j = 1 , 2 , . . . , k (4) y_j = \frac{S_{Nj}}{S_D},j=1,2,...,k \tag{4} yj=SDSNj,j=1,2,...,k(4)

3.GRNN的理论基础

广义回归神经网络的理论基础是非线性回归分析 , 非独立变量 Y 相对于独立变量x的回归分析实际上是计算具有最大概率值的 y. 设随机变量x和随机变量 y 的联合概率密度函数 为f(x,y),已知 x 的观测值为 X ,则 y 相对于 X 的回归,也即条件均值为:

KaTeX parse error: \tag works only in display equations

Y即为在输入为 X 的条件下,Y 的预测输出 。

应用 Parzen 非参数估计,可由样本数据集 x i , y i i = 1 n {x_i,y_i}_{i=1}^n xi,yii=1n估算密度函数 f ′ ( X , y ) f'(X,y) f(X,y)
f ′ ( X , y ) = ∑ i = 1 n e x p [ − ( X − X i ) T ( X − X i ) 2 σ 2 ] e x p [ − ( X − Y i ) 2 2 σ 2 ] / ( n ( 2 π ) p + 1 2 σ p + 1 ) (6) f'(X,y) =\sum_{i=1}^n exp[-\frac{(X-X_i)^T(X-X_i)}{2\sigma^2}]exp[-\frac{(X-Y_i)^2}{2\sigma^2}]/(n(2\pi)^{\frac{p+1}{2}}\sigma^{p+1}) \tag{6} f(X,y)=i=1nexp[2σ2(XXi)T(XXi)]exp[2σ2(XYi)2]/(n(2π)2p+1σp+1)(6)
式中, X i X_i Xi Y i Y_i Yi, 为随机变量 x 和 y 的样本观测值; n n n为样本容量; p p p为随机变量 x x x的维数; σ σ σ为高斯函数的宽度系数,在此称为光滑因子。

f ( X , y ) f(X,y) f(X,y)代替 f ( X , y ) f(X,y) f(X,y)代人式,并交换积分与加和的顺序:
Y ( X ) = ∑ i = 1 n e x p [ − ( X − X i ) T ( X − X i ) 2 σ 2 ] ∫ − ∞ ∞ y e x p [ − ( Y − Y i ) 2 / ( 2 σ 2 ) ] d y ∑ i = 1 n e x p [ − ( X − X i ) T ( X − X i ) 2 σ 2 ] ∫ − ∞ ∞ e x p [ − ( Y − Y i ) 2 / ( 2 σ 2 ) ] d y (7) Y(X) = \frac{\sum_{i=1}^n exp[-\frac{(X-X_i)^T(X-X_i)}{2\sigma^2}]\int_{-\infty}^{\infty}yexp[-(Y-Y_i)^2/(2\sigma^2)]dy}{\sum_{i=1}^n exp[-\frac{(X-X_i)^T(X-X_i)}{2\sigma^2}]\int_{-\infty}^{\infty}exp[-(Y-Y_i)^2/(2\sigma^2)]dy}\tag{7} Y(X)=i=1nexp[2σ2(XXi)T(XXi)]exp[(YYi)2/(2σ2)]dyi=1nexp[2σ2(XXi)T(XXi)]yexp[(YYi)2/(2σ2)]dy(7)
由于 ∫ − ∞ ∞ z e − x 2 d z = 0 \int _{-\infty}^{\infty}ze^{-x^2}dz = 0 zex2dz=0,对两个积分进行计算后可得网络的输出Y(X)为:
Y ( X ) = ∑ i = 1 n Y i e x p [ − ( X − X i ) T ( X − X i ) 2 σ 2 ] ∑ i = 1 n e x p [ − ( X − X i ) T ( X − X i ) 2 σ 2 ] (8) Y(X) = \frac{\sum_{i=1}^nY_i exp[-\frac{(X-X_i)^T(X-X_i)}{2\sigma^2}]}{\sum_{i=1}^n exp[-\frac{(X-X_i)^T(X-X_i)}{2\sigma^2}]} \tag{8} Y(X)=i=1nexp[2σ2(XXi)T(XXi)]i=1nYiexp[2σ2(XXi)T(XXi)](8)
估计值 Y ( X ) Y(X) Y(X)为所有样本观测值 Y i Y_i Yi的加权平均,每个观测值 Y i Y_i Yi的权重因子为相应的样本 X i X_i Xi X X X之间 Euclid 距离平方的指数 . 当光滑因子 σ 非常大的时候 , Y ( X ) Y(X) Y(X)近似于所有样本因变量的均值 。 相反,当光滑因子σ 。趋向于0 的时候, Y ( X ) Y(X) Y(X)和训练样本非常接近,当需预测的点被包含在训练样本集中时,公式求出的因变量的预测值会和样本中对应的因变量非常接近, 而一旦碰到样本中未能包含进去的点,有可能预测效果会非常差 , 这种现象说明网络的泛化能力差。当σ取值适中,求预测值 Y ( X ) Y(X) Y(X)时,所有训练样本的因变量都被考虑了进去,与预测点距离近的样本点对应的因变量被加了更大的权。

4.数据集

数据信息如下:

data.mat 的中包含input数据和output数据

其中input数据维度为:2000*2

其中output数据维度为2000*1

所以RF模型的数据输入维度为2;输出维度为1。

5.多元宇宙算法优化GRNN

多元宇宙算法原理请参考:https://blog.csdn.net/u011835903/article/details/107785205

优化参数主要是GRNN的光滑因子 σ \sigma σ参数。是适应度函数设计为:
f i n t e n e s s = M S E [ p r e d i c t ( t r a i n ) ] + M S E [ p r e d i c t ( t e s t ) ] finteness = MSE[predict(train)] + MSE[predict(test)] finteness=MSE[predict(train)]+MSE[predict(test)]
适应度函数选取训练后的MSE误差。MSE误差越小表明预测的数据与原始数据重合度越高。最终优化的输出为,最佳的光滑因子。

6.实验结果

多元宇宙算法的参数设置如下:

%% 多元宇宙算法
pop = 20;%种群数量
Max_iteration = 20;%最大迭代次数
lb = 0.01;%下边界
ub = 2;%上边界
dim = 1;%维度
fobj = @(spread) fun(spread,Pn_train,Tn_train,Pn_test,Tn_test);
[Best_pos,Best_score,SSA_curve]=SSA(pop,Max_iteration,lb,ub,dim,fobj); %开始优化

经过多元宇宙算法优化的结果:
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

从MSE 误差曲线可以看出,多元宇宙优化的GRNN结果更好

7.Matlab代码

版权声明:本文为博主原创文章,遵循 CC 4.0 BY-SA 版权协议,转载请附上原文出处链接和本声明。
本文链接:https://blog.csdn.net/u011835903/article/details/137525734

智能推荐

攻防世界_难度8_happy_puzzle_攻防世界困难模式攻略图文-程序员宅基地

文章浏览阅读645次。这个肯定是末尾的IDAT了,因为IDAT必须要满了才会开始一下个IDAT,这个明显就是末尾的IDAT了。,对应下面的create_head()代码。,对应下面的create_tail()代码。不要考虑爆破,我已经试了一下,太多情况了。题目来源:UNCTF。_攻防世界困难模式攻略图文

达梦数据库的导出(备份)、导入_达梦数据库导入导出-程序员宅基地

文章浏览阅读2.9k次,点赞3次,收藏10次。偶尔会用到,记录、分享。1. 数据库导出1.1 切换到dmdba用户su - dmdba1.2 进入达梦数据库安装路径的bin目录,执行导库操作  导出语句:./dexp cwy_init/[email protected]:5236 file=cwy_init.dmp log=cwy_init_exp.log 注释:   cwy_init/init_123..._达梦数据库导入导出

js引入kindeditor富文本编辑器的使用_kindeditor.js-程序员宅基地

文章浏览阅读1.9k次。1. 在官网上下载KindEditor文件,可以删掉不需要要到的jsp,asp,asp.net和php文件夹。接着把文件夹放到项目文件目录下。2. 修改html文件,在页面引入js文件:<script type="text/javascript" src="./kindeditor/kindeditor-all.js"></script><script type="text/javascript" src="./kindeditor/lang/zh-CN.js"_kindeditor.js

STM32学习过程记录11——基于STM32G431CBU6硬件SPI+DMA的高效WS2812B控制方法-程序员宅基地

文章浏览阅读2.3k次,点赞6次,收藏14次。SPI的详情简介不必赘述。假设我们通过SPI发送0xAA,我们的数据线就会变为10101010,通过修改不同的内容,即可修改SPI中0和1的持续时间。比如0xF0即为前半周期为高电平,后半周期为低电平的状态。在SPI的通信模式中,CPHA配置会影响该实验,下图展示了不同采样位置的SPI时序图[1]。CPOL = 0,CPHA = 1:CLK空闲状态 = 低电平,数据在下降沿采样,并在上升沿移出CPOL = 0,CPHA = 0:CLK空闲状态 = 低电平,数据在上升沿采样,并在下降沿移出。_stm32g431cbu6

计算机网络-数据链路层_接收方收到链路层数据后,使用crc检验后,余数为0,说明链路层的传输时可靠传输-程序员宅基地

文章浏览阅读1.2k次,点赞2次,收藏8次。数据链路层习题自测问题1.数据链路(即逻辑链路)与链路(即物理链路)有何区别?“电路接通了”与”数据链路接通了”的区别何在?2.数据链路层中的链路控制包括哪些功能?试讨论数据链路层做成可靠的链路层有哪些优点和缺点。3.网络适配器的作用是什么?网络适配器工作在哪一层?4.数据链路层的三个基本问题(帧定界、透明传输和差错检测)为什么都必须加以解决?5.如果在数据链路层不进行帧定界,会发生什么问题?6.PPP协议的主要特点是什么?为什么PPP不使用帧的编号?PPP适用于什么情况?为什么PPP协议不_接收方收到链路层数据后,使用crc检验后,余数为0,说明链路层的传输时可靠传输

软件测试工程师移民加拿大_无证移民,未受过软件工程师的教育(第1部分)-程序员宅基地

文章浏览阅读587次。软件测试工程师移民加拿大 无证移民,未受过软件工程师的教育(第1部分) (Undocumented Immigrant With No Education to Software Engineer(Part 1))Before I start, I want you to please bear with me on the way I write, I have very little gen...

随便推点

Thinkpad X250 secure boot failed 启动失败问题解决_安装完系统提示secureboot failure-程序员宅基地

文章浏览阅读304次。Thinkpad X250笔记本电脑,装的是FreeBSD,进入BIOS修改虚拟化配置(其后可能是误设置了安全开机),保存退出后系统无法启动,显示:secure boot failed ,把自己惊出一身冷汗,因为这台笔记本刚好还没开始做备份.....根据错误提示,到bios里面去找相关配置,在Security里面找到了Secure Boot选项,发现果然被设置为Enabled,将其修改为Disabled ,再开机,终于正常启动了。_安装完系统提示secureboot failure

C++如何做字符串分割(5种方法)_c++ 字符串分割-程序员宅基地

文章浏览阅读10w+次,点赞93次,收藏352次。1、用strtok函数进行字符串分割原型: char *strtok(char *str, const char *delim);功能:分解字符串为一组字符串。参数说明:str为要分解的字符串,delim为分隔符字符串。返回值:从str开头开始的一个个被分割的串。当没有被分割的串时则返回NULL。其它:strtok函数线程不安全,可以使用strtok_r替代。示例://借助strtok实现split#include <string.h>#include <stdio.h&_c++ 字符串分割

2013第四届蓝桥杯 C/C++本科A组 真题答案解析_2013年第四届c a组蓝桥杯省赛真题解答-程序员宅基地

文章浏览阅读2.3k次。1 .高斯日记 大数学家高斯有个好习惯:无论如何都要记日记。他的日记有个与众不同的地方,他从不注明年月日,而是用一个整数代替,比如:4210后来人们知道,那个整数就是日期,它表示那一天是高斯出生后的第几天。这或许也是个好习惯,它时时刻刻提醒着主人:日子又过去一天,还有多少时光可以用于浪费呢?高斯出生于:1777年4月30日。在高斯发现的一个重要定理的日记_2013年第四届c a组蓝桥杯省赛真题解答

基于供需算法优化的核极限学习机(KELM)分类算法-程序员宅基地

文章浏览阅读851次,点赞17次,收藏22次。摘要:本文利用供需算法对核极限学习机(KELM)进行优化,并用于分类。

metasploitable2渗透测试_metasploitable2怎么进入-程序员宅基地

文章浏览阅读1.1k次。一、系统弱密码登录1、在kali上执行命令行telnet 192.168.26.1292、Login和password都输入msfadmin3、登录成功,进入系统4、测试如下:二、MySQL弱密码登录:1、在kali上执行mysql –h 192.168.26.129 –u root2、登录成功,进入MySQL系统3、测试效果:三、PostgreSQL弱密码登录1、在Kali上执行psql -h 192.168.26.129 –U post..._metasploitable2怎么进入

Python学习之路:从入门到精通的指南_python人工智能开发从入门到精通pdf-程序员宅基地

文章浏览阅读257次。本文将为初学者提供Python学习的详细指南,从Python的历史、基础语法和数据类型到面向对象编程、模块和库的使用。通过本文,您将能够掌握Python编程的核心概念,为今后的编程学习和实践打下坚实基础。_python人工智能开发从入门到精通pdf

推荐文章

热门文章

相关标签