7.PCIE配置空间读写软件_pci_bus_write_config_word-程序员宅基地

技术标签: pci-e  PCIe  cls  

软件-7.PCIE配置空间读写

软件-7.PCIE配置空间读写

  • 软件-7.PCIE配置空间读写
    • 软件读写配置空间
      • 驱动层接口
      • 原理分析
        • 驱动层代码接口
        • 驱动层接口与原理
          • 相关参考
          • 基础知识
          • raw_pci_ops 得初始化
          • raw_pci_ext_ops 得原理-ECAM
          • 如何获取ECAM得基地址?

软件读写配置空间

驱动层接口

inline int pci_read_config_byte(struct pci_dev *dev, int where, u8 *val); 
inline int pci_read_config_word(struct pci_dev *dev, int where, u16 *val); 
inline int pci_read_config_dword(struct pci_dev *dev, int where, u32 *val); 
inline int pci_write_config_byte(struct pci_dev *dev, int where, u8 val); 
inline int pci_write_config_word(struct pci_dev *dev, int where, u16 val); 
inline int pci_write_config_dword(struct pci_dev *dev, int where, u32 val);

根本就是调用 pci总线接口

int pci_bus_read_config_byte (struct pci_bus *bus, unsigned int devfn, int where, u8 *val);  //读字节
int pci_bus_read_config_word (struct pci_bus *bus, unsigned int devfn, int where, u16 *val);  //读字
int pci_bus_read_config_dword (struct pci_bus *bus, unsigned int devfn, int where, u32 *val); //读双字
int pci_bus_write_config_byte (struct pci_bus *bus, unsigned int devfn, int where, u8 val);  //写字节
int pci_bus_write_config_word (struct pci_bus *bus, unsigned int devfn, int where, u16  val); //写字
int pci_bus_write_config_dword (struct pci_bus *bus, unsigned int devfn, int where, u32  val); //写双字

在drivers\pci\access.c 中

int pci_bus_write_config_##size \
	(struct pci_bus *bus, unsigned int devfn, int pos, type value)	\
{									\
	int res;							\
	unsigned long flags;						\
	if (PCI_##size##_BAD) return PCIBIOS_BAD_REGISTER_NUMBER;	\
	pci_lock_config(flags);						\
	res = bus->ops->write(bus, devfn, pos, len, value);		\                       // 重点
	pci_unlock_config(flags);					\
	return res;							\
}

所以主要代码是 : bus->ops

原理分析

驱动层代码接口

根总线读写操作接口初始化

pci_acpi_scan_root
    ->acpi_pci_root_create  // 重要参数: acpi_pci_root_ops
        ->pci_create_root_bus // bridge->ops=acpi_pci_root_ops.pci_ops, 也就是 pci_root_ops
        ->pci_register_host_bridge
            ->bus->ops = bridge->ops // acpi_pci_root_ops.ops, 也就是 pci_root_ops

所以bus得操作接口为 acpi_pci_root_ops

struct pci_ops pci_root_ops = {
	.read = pci_read,
	.write = pci_write,
};
static struct acpi_pci_root_ops acpi_pci_root_ops = {
	.pci_ops = &pci_root_ops,
};

所以只需要分析 pci_root_ops即可

int raw_pci_write(unsigned int domain, unsigned int bus, unsigned int devfn,
						int reg, int len, u32 val)
{
	if (domain == 0 && reg < 256 && raw_pci_ops)
		return raw_pci_ops->write(domain, bus, devfn, reg, len, val);       // 基础配置空间
	if (raw_pci_ext_ops)
		return raw_pci_ext_ops->write(domain, bus, devfn, reg, len, val);   // 扩展配置空间
	return -EINVAL;
}

所以可以得到结论:
pci读写 0x00-0xFF 使用raw_pci_ops
pci读写 0x100-0xFFF 使用 raw_pci_ext_ops

驱动层接口与原理

相关参考

基础知识

在X86架构上有关于这部分的描述:

10th Generation Intel Core Processors, Datasheet Volume 1 of 2 中 P29页描述:

 

PCI Express 将配置空间扩展到每个设备/功能4K字节
PCI Express 配置空间分为 一个PCI兼容区域(就是前256个字节组成)和 一个扩展的PCIExpress 区域(就是 0x100-0xFFF)。

PCI前256字节配置空间:可以通过 PCI规范中定义的机制(就是 通过 0cf8-0cff : PCI conf1 两个ioport通过BDF来寻址访问 ) 或 使用PCI Express 增强配置机制(ECAM- PCI Express Enhanced Configuration Access Mechanism)访问机制来访问PCI兼容区域

PCI的0x100-0xFFF的ECAM访问,使用ioremap去访问PCI Express区域,这个属于硬件支持,基地址从ACPI来获取到
PCI Express 主机桥,将内存映射的PCI Express 配置空间访问从主机处理器转换为PCI Express 配置周期。为了保持与PCI配置寻址机制的兼容性,建议系统软件仅使用32位操作(32位对齐)访问增强的配置空间。有关PCI兼容和PCI Express 增强配置机制和事务规则的详细信息,请参阅《 PCI Express基本规范》。

raw_pci_ops 得初始化

初始化入口

// init.c:45:arch_initcall(pci_arch_init);
pci_arch_init
    // 《Linux那些事之PCI》P5中描述了三种PCI access mode,  
    //  内核中CONFIG_PCI_DIRECT这个宏有配直接Direct去访问
    pci_direct_probe();   // 初始化0xCF8和0xCFC,并初始化

    if (x86_init.pci.arch_init && !x86_init.pci.arch_init())  // 函数没实现,哈哈
        return 0;

    // pci_pcbios_init();  // CONFIG_PCI_BIOS--不配置,不用看
    pci_direct_init(type); // raw_pci_ops = raw_pci_ext_ops 预留读写pci配置空间的接口
pci_probe & PCI_PROBE_CONF1 # 判断,什么是CONF1和CONF2
request_region(0xCF8, 8, "PCI conf1") # 为什么使用0xCF8
pci_check_type1()	# 检测type1
raw_pci_ops = &pci_direct_conf1;  # !!! 初始化pci配置空间操作接口

结论(重点):
所以raw_pci_ops = &pci_direct_conf1; 可以看到 使用0xCF8和0xCFC访问PCI基础配置空间

inno@DEV-005:~$ sudo cat /proc/ioports  | grep "PCI conf"   # 申请到得IO接口
0cf8-0cff : PCI conf1

// arch/x86/direct.c中                                                     // 访问格式
#define PCI_CONF1_ADDRESS(bus, devfn, reg) \
	(0x80000000 | ((reg & 0xF00) << 16) | (bus << 16) \
	| (devfn << 8) | (reg & 0xFC))
outl(PCI_CONF1_ADDRESS(bus, devfn, reg), 0xCF8);  // 配置地址
u32 value = inl(0xCFC); // 读取配置

深入PCI与PCIe之二:软件篇 中描述了CONFIG_ADD_RESS得结构:

CONFIG_ADDRESS寄存器格式:
31 位:Enabled位。
23:16 位:总线编号。 // bus
15:11 位:设备编号。 // devfn[7:3]
10: 8 位:功能编号。 // devfn[2:0]
7: 2 位:配置空间寄存器编号。 // 配置空间偏移地址, 注:因为是32位端口,所以4字节访问。
1: 0 位:恒为“00”。这是因为CF8h、CFCh端口是32位端口。

raw_pci_ext_ops 得原理-ECAM

参考:

ECAM是访问PCIe配置空间一种机制,PCIe配置空间大小是4k
4kbyte寄存器地址空间,需要12bit bit 0~bit11
Function Number bit 12~bit 14
Device Number bit 15~bit 19
Bus Number bit 20~bit 27

如何访问一个PCIe设备的配置空间呢?
比如ECAM 基地址是0xd0000000

devmem 0xd0000000就是访问00:00.0 设备偏移0寄存器,就是Device ID和Vendor ID
devmem 0xd0100000就是访问01:00.0 设备偏移0寄存器

所以,这里重点就是看ECAM得初始化

pci_acpi_scan_root      // 主桥信息struct pci_root_info  和  struct pci_sysdata 初始化
    -> acpi_pci_root_create // ECAM初始化,主桥资源初始化
        ->  ops->init_info(info)  // 就是 acpi_pci_root_ops得 pci_acpi_root_init_info
        
pci_acpi_root_init_info
    -> setup_mcfg_map

setup_mcfg_map

pci_mmcfg_late_init();
	 // #define ACPI_SIG_MCFG           "MCFG"	/* PCI Memory Mapped Configuration table */
	acpi_table_parse(ACPI_SIG_MCFG, pci_mcfg_parse);  // "ACPI中关于MCFG的描述"
    
if (raw_pci_ext_ops == NULL)
			raw_pci_ext_ops = &pci_mmcfg;       // !!! 初始化接口

如何获取ECAM得基地址?

方式一:打印ACPI表

sudo apt-get install -y iasl acpica-tools
mkdir -p  testacpi  && cd testacpi
acpidump > acpidump.out     # 将ACPI表二进制打印到文件
acpixtract -a acpidump.out  # 解析acpi表,生成各个dat文件
iasl -d mcfg.dat            # iasl会解析acpi 二进制表,生成xxx.dsl描述文件
cat mcfg.dsl 					# 可以查看mcfg的配置文件

比如Intel,我这里看到的是 0x8000_0000,
Start BusNum=00, End BusNum=ff, 所以所有总线的ECAM都在这个空间,按照ECAM地址空间依次偏移即可。

cat /proc/ioport | grep 80000000
80000000-8FFFFFFF  PCI MMCONFIG [bus 00 - ff]

方式二:看内核启动打印

比如这个ECAM的基地址是0xe0000000
[    0.111732] PCI: MMCONFIG for domain 0000 [bus 00-ff] at [mem 0xe0000000-0xefffffff] (base 0xe0000000)
[    0.111734] PCI: MMCONFIG at [mem 0xe0000000-0xefffffff] reserved in E820

 

版权声明:本文为博主原创文章,遵循 CC 4.0 BY-SA 版权协议,转载请附上原文出处链接和本声明。
本文链接:https://blog.csdn.net/star871016/article/details/119775483

智能推荐

oracle 12c 集群安装后的检查_12c查看crs状态-程序员宅基地

文章浏览阅读1.6k次。安装配置gi、安装数据库软件、dbca建库见下:http://blog.csdn.net/kadwf123/article/details/784299611、检查集群节点及状态:[root@rac2 ~]# olsnodes -srac1 Activerac2 Activerac3 Activerac4 Active[root@rac2 ~]_12c查看crs状态

解决jupyter notebook无法找到虚拟环境的问题_jupyter没有pytorch环境-程序员宅基地

文章浏览阅读1.3w次,点赞45次,收藏99次。我个人用的是anaconda3的一个python集成环境,自带jupyter notebook,但在我打开jupyter notebook界面后,却找不到对应的虚拟环境,原来是jupyter notebook只是通用于下载anaconda时自带的环境,其他环境要想使用必须手动下载一些库:1.首先进入到自己创建的虚拟环境(pytorch是虚拟环境的名字)activate pytorch2.在该环境下下载这个库conda install ipykernelconda install nb__jupyter没有pytorch环境

国内安装scoop的保姆教程_scoop-cn-程序员宅基地

文章浏览阅读5.2k次,点赞19次,收藏28次。选择scoop纯属意外,也是无奈,因为电脑用户被锁了管理员权限,所有exe安装程序都无法安装,只可以用绿色软件,最后被我发现scoop,省去了到处下载XXX绿色版的烦恼,当然scoop里需要管理员权限的软件也跟我无缘了(譬如everything)。推荐添加dorado这个bucket镜像,里面很多中文软件,但是部分国外的软件下载地址在github,可能无法下载。以上两个是官方bucket的国内镜像,所有软件建议优先从这里下载。上面可以看到很多bucket以及软件数。如果官网登陆不了可以试一下以下方式。_scoop-cn

Element ui colorpicker在Vue中的使用_vue el-color-picker-程序员宅基地

文章浏览阅读4.5k次,点赞2次,收藏3次。首先要有一个color-picker组件 <el-color-picker v-model="headcolor"></el-color-picker>在data里面data() { return {headcolor: ’ #278add ’ //这里可以选择一个默认的颜色} }然后在你想要改变颜色的地方用v-bind绑定就好了,例如:这里的:sty..._vue el-color-picker

迅为iTOP-4412精英版之烧写内核移植后的镜像_exynos 4412 刷机-程序员宅基地

文章浏览阅读640次。基于芯片日益增长的问题,所以内核开发者们引入了新的方法,就是在内核中只保留函数,而数据则不包含,由用户(应用程序员)自己把数据按照规定的格式编写,并放在约定的地方,为了不占用过多的内存,还要求数据以根精简的方式编写。boot启动时,传参给内核,告诉内核设备树文件和kernel的位置,内核启动时根据地址去找到设备树文件,再利用专用的编译器去反编译dtb文件,将dtb还原成数据结构,以供驱动的函数去调用。firmware是三星的一个固件的设备信息,因为找不到固件,所以内核启动不成功。_exynos 4412 刷机

Linux系统配置jdk_linux配置jdk-程序员宅基地

文章浏览阅读2w次,点赞24次,收藏42次。Linux系统配置jdkLinux学习教程,Linux入门教程(超详细)_linux配置jdk

随便推点

matlab(4):特殊符号的输入_matlab微米怎么输入-程序员宅基地

文章浏览阅读3.3k次,点赞5次,收藏19次。xlabel('\delta');ylabel('AUC');具体符号的对照表参照下图:_matlab微米怎么输入

C语言程序设计-文件(打开与关闭、顺序、二进制读写)-程序员宅基地

文章浏览阅读119次。顺序读写指的是按照文件中数据的顺序进行读取或写入。对于文本文件,可以使用fgets、fputs、fscanf、fprintf等函数进行顺序读写。在C语言中,对文件的操作通常涉及文件的打开、读写以及关闭。文件的打开使用fopen函数,而关闭则使用fclose函数。在C语言中,可以使用fread和fwrite函数进行二进制读写。‍ Biaoge 于2024-03-09 23:51发布 阅读量:7 ️文章类型:【 C语言程序设计 】在C语言中,用于打开文件的函数是____,用于关闭文件的函数是____。

Touchdesigner自学笔记之三_touchdesigner怎么让一个模型跟着鼠标移动-程序员宅基地

文章浏览阅读3.4k次,点赞2次,收藏13次。跟随鼠标移动的粒子以grid(SOP)为partical(SOP)的资源模板,调整后连接【Geo组合+point spirit(MAT)】,在连接【feedback组合】适当调整。影响粒子动态的节点【metaball(SOP)+force(SOP)】添加mouse in(CHOP)鼠标位置到metaball的坐标,实现鼠标影响。..._touchdesigner怎么让一个模型跟着鼠标移动

【附源码】基于java的校园停车场管理系统的设计与实现61m0e9计算机毕设SSM_基于java技术的停车场管理系统实现与设计-程序员宅基地

文章浏览阅读178次。项目运行环境配置:Jdk1.8 + Tomcat7.0 + Mysql + HBuilderX(Webstorm也行)+ Eclispe(IntelliJ IDEA,Eclispe,MyEclispe,Sts都支持)。项目技术:Springboot + mybatis + Maven +mysql5.7或8.0+html+css+js等等组成,B/S模式 + Maven管理等等。环境需要1.运行环境:最好是java jdk 1.8,我们在这个平台上运行的。其他版本理论上也可以。_基于java技术的停车场管理系统实现与设计

Android系统播放器MediaPlayer源码分析_android多媒体播放源码分析 时序图-程序员宅基地

文章浏览阅读3.5k次。前言对于MediaPlayer播放器的源码分析内容相对来说比较多,会从Java-&amp;amp;gt;Jni-&amp;amp;gt;C/C++慢慢分析,后面会慢慢更新。另外,博客只作为自己学习记录的一种方式,对于其他的不过多的评论。MediaPlayerDemopublic class MainActivity extends AppCompatActivity implements SurfaceHolder.Cal..._android多媒体播放源码分析 时序图

java 数据结构与算法 ——快速排序法-程序员宅基地

文章浏览阅读2.4k次,点赞41次,收藏13次。java 数据结构与算法 ——快速排序法_快速排序法