kaggle数据挖掘竞赛--信用卡违约风险评估模型_kaggle credit risk-程序员宅基地

技术标签: jupyter  机器学习  深度学习  神经网络  数据挖掘  

本例程是通过客户提供的信息分析客户会产生违约的可能性。由此来判断是否要给客户提供贷款。背景内容不再多说,数据相关的解释在代码中会有注释。运行中缺失的包请自行安装,我这里的环境是anaconda

直接上代码:

import numpy as no
import pandas as pd
import os

import seaborn as sns
color = sns.color_palette()

import matplotlib.pyplot as plt
%matplotlib inline
import plotly.offline as py
py.init_notebook_mode(connected=True)
from plotly.offline import init_notebook_mode,iplot
init_notebook_mode(connected=True)
import plotly.graph_objs as go
import plotly.offline as offline
offline.init_notebook_mode()

import cufflinks as cf
cf.go_offline()
#下面开始加载数据
df_train = pd.read_csv('./dataset/Home_Credit/application_train.csv')
df_test  = pd.read_csv('./dataset/Home_Credit/application_test.csv')
#看看都有哪些属性
df_train.columns.values

#属性很多,有点吓人

print(df_train.shape)

#(307511, 122)

df_train.head()

#检查application_train 中的缺失数据
total = df_train.isnull().sum().sort_values(ascending = False)
percent = (df_train.isnull().sum()/df_train.isnull().count()*100).sort_values(ascending=False)
missing_application_train_data = pd.concat([total,percent],axis = 1,keys=['Toatl','Percent'])
missing_application_train_data.head(10)

#开始探索我们的数据


#贷款金额 分布

plt.figure(figsize=(12,5))
plt.title("Distribution of AMT_CREDIT")
ax = sns.distplot(df_train["AMT_CREDIT"])

#客户年收入(大部分人都是在50000以下)
plt.figure(figsize=(12,5))
plt.title("Distribution of AMT_INCOME_TOTAL")
ax = sns.distplot(df_train["AMT_ANNUITY"].dropna())

#消费贷款,对应贷款的商品的价格
plt.figure(figsize=(12,5))
plt.title("Distribution of AMT_GOODS_PRICE")
ax = sns.distplot(df_train['AMT_GOODS_PRICE'].dropna())

#申请贷款的时候客户的陪同人
temp = df_train["NAME_TYPE_SUITE"].value_counts()
trace = go.Bar(
    x = temp.index,
    y = (temp / temp.sum())*100,
)
data = [trace]
layout = go.Layout(
    title = "Distribution of Name of type of the Suite in % ",
    xaxis=dict(
        title='Name of type of the Suite',
        tickfont=dict(
            size=14,
            color='rgb(107, 107, 107)'
        )
    ),
    yaxis=dict(
        title='Count of Name of type of the Suite in %',
        titlefont=dict(
            size=16,
            color='rgb(107, 107, 107)'
        ),
        tickfont=dict(
            size=14,
            color='rgb(107, 107, 107)'
        )
)
)
fig = go.Figure(data=data, layout=layout)
py.iplot(fig, filename='schoolStateNames')

#如下图看来一个人的时候发生贷款的概率更高,有人陪同估计不好意思

 

#是否发生逾期未还的情况分布,看来绝大多数人还是守信用的
temp = df_train["TARGET"].value_counts()
df = pd.DataFrame({'labels': temp.index,
                   'values': temp.values
                  })
df.iplot(kind='pie',labels='labels',values='values', title='Loan Repayed or not')

#贷款是现金还是循环的标识 (就是一次性拿到全部贷款还是当前只拿部分在后面需要的时候再拿)
temp = df_train["NAME_CONTRACT_TYPE"].value_counts()
fig = {
  "data": [
    {
      "values": temp.values,
      "labels": temp.index,
      "domain": {"x": [0, .48]},
      #"name": "Types of Loans",
      #"hoverinfo":"label+percent+name",
      "hole": .7,
      "type": "pie"
    },
    
    ],
  "layout": {
        "title":"Types of loan",
        "annotations": [
            {
                "font": {
                    "size": 20
                },
                "showarrow": False,
                "text": "Loan Types",
                "x": 0.17,
                "y": 0.5
            }
            
        ]
    }
}
iplot(fig, filename='donut')

#如下图可知绝大部分人都只是会拿到贷款全部额度,毕竟贷款一般是解燃眉之急,很少有人贷款回来慢慢用。

#是否有房/车
#FLAG_OWN_CAR 客户是否拥有汽车
#FLAG_OWN_REALTY  客户是否拥有房屋或公寓

temp1 = df_train["FLAG_OWN_CAR"].value_counts()
temp2 = df_train["FLAG_OWN_REALTY"].value_counts()

fig = {
  "data": [
    {
      "values": temp1.values,
      "labels": temp1.index,
      "domain": {"x": [0, .48]},
      "name": "Own Car",
      "hoverinfo":"label+percent+name",
      "hole": .6,
      "type": "pie"
    },
    {
      "values": temp2.values,
      "labels": temp2.index,
      "textposition":"inside",
      "domain": {"x": [.52, 1]},
      "name": "Own Reality",
      "hoverinfo":"label+percent+name",
      "hole": .6,
      "type": "pie"
    }],
  "layout": {
        "title":"Purpose of loan",
        "annotations": [
            {
                "font": {
                    "size": 20
                },
                "showarrow": False,
                "text": "Own Car",
                "x": 0.20,
                "y": 0.5
            },
            {
                "font": {
                    "size": 20
                },
                "showarrow": False,
                "text": "Own Reality",
                "x": 0.8,
                "y": 0.5
            }
        ]
    }
}
iplot(fig, filename='donut')

#如下图看下来,多数贷款的人是有房没车的人。有房没车估计也是底层人民啊,这符合我们正常的认知,没有住所的人去贷款估计也很难通过(谁愿意借钱给流浪汉呢)

# 收入类型
# 工作/商业助理/退休人员/公务员/失业/学生/商人/产假
temp = df_train['NAME_INCOME_TYPE'].value_counts()
df = pd.DataFrame({'labels':temp.index,
                    'values':temp.values})
df.iplot(kind='pie',labels='labels',values='values',title='Income sources of Applicant\'s',hole=0.5)

#多数人还是上班族(干得多拿得少,万恶的资本主义)

#贷款申请人的家庭状况
#结婚(有宗教或教堂参与的)/单身/民事婚姻(类似中国有政府部门颁发结婚证的民间组织的婚姻)/分离/寡(应该是丧偶)/未知
temp = df_train['NAME_FAMILY_STATUS'].value_counts()
df = pd.DataFrame({'labels':temp.index,
                  'values':temp.values})

df.iplot(kind='pie',labels='labels',values='values',title='Family Status of Applicant\'s',hole=0.6)
#除了正常已婚人士,单身汉也不少,看来单身汉是真缺钱(要不然也不会单身是吧)

#申请人的职业

temp = df_train['OCCUPATION_TYPE'].value_counts()
# df = pd.DataFrame({'labels':temp.index,
#                   'values':temp.values})
# df.iplot(kind='pie',labels='labels',values='values',title='Family Status of Applicant\'s',hole=0.6)


temp.iplot(kind='bar',xTitle='Occupation',yTitle='Count',title='Occupation of Applicatnt\'s who applied for loan',color='green')

#看看下图,最缺钱的是伟大的劳动者,最不缺钱的竟然是我们IT人员(看来是我拖大家的后腿了)

#申请人的教育情况

temp = df_train['NAME_EDUCATION_TYPE'].value_counts()
df = pd.DataFrame({'labels':temp.index,
                  'values':temp.values})

df.iplot(kind='pie',labels='labels',values='values',title='Education od Applicant\'s',hole=0.5)
#Secondary special 中等专业学校学历的人最缺钱,然后是Higher education高等教育,难道是学历越高眼界越高,欲望越多,压力越大(也有可能是其他的情况,比如学历底了收入少、还款能力底,贷款批不下来,也就不再去申请贷款了)

#住房情况



temp = df_train["NAME_HOUSING_TYPE"].value_counts()
df = pd.DataFrame({'labels': temp.index,
                   'values': temp.values
                  })
df.iplot(kind='pie',labels='labels',values='values', title='Type of House', hole = 0.5)

#住父母房子的人贷款的是最多的(难道是生活压力小只想这享乐了,合租的人很少去贷款估计是要攒钱改善生活吧)

#工作机构类型
temp = df_train["ORGANIZATION_TYPE"].value_counts()
df = pd.DataFrame({'labels': temp.index,
                   'values': temp.values
                  })
df.iplot(kind='pie',labels='labels',values='values', title='Type of House', hole = 0.5)
#最缺钱的是做实体的(这个国内情况很相似,踏实做事的企业赚不到钱;反倒不如投机倒把,炒房,炒股票的赚钱,堪忧啊)

#将类别属性数值化

from sklearn import preprocessing


#找出类别的属性
categorical_features = [
    categorical for categorical in df_train.columns if df_train[categorical].dtype == 'object'
]

#将类别属性数值化
for i in categorical_features:
    lben = preprocessing.LabelEncoder()
    lben.fit(list(df_train[i].values.astype('str')) + list(df_test[i].values.astype('str')))
    df_train[i] = lben.transform(list(df_train[i].values.astype('str')))
    df_test[i] = lben.transform(list(df_test[i].values.astype('str')))
#用-999填充空值
df_train.fillna(-999, inplace = True)
df_test.fillna(-999, inplace = True)
#构建模型


#LightGBM是个快速的,分布式的,高性能的基于决策树算法的梯度提升框架。可用于排序,分类,回归以及很多其他的机器学习任务中。

#如果没有lightgbm包,则需要安装(用了镜像源) pip install -i https://pypi.tuna.tsinghua.edu.cn/simple/  lightgbm
import lightgbm as lgb
from sklearn.model_selection import train_test_split 
#提取标签列
Y = df_train['TARGET']
test_id = df_test['SK_ID_CURR']

#删除不用与训练的属性
train_X = df_train.drop(['TARGET','SK_ID_CURR'],axis=1)
test_X = df_test.drop(['SK_ID_CURR'], axis = 1)
#训练集分割为训练数据和验证数据
x_train, x_val, y_train, y_val = train_test_split(
    train_X, 
    Y, 
    random_state=18)
lgb_train = lgb.Dataset(data=x_train, label=y_train)
lgb_eval = lgb.Dataset(data=x_val, label=y_val)
#模型参数

params = {
    'task': 'train', 
    'boosting_type': 'gbdt', 
    'objective': 'binary', 
    'metric': 'auc', 
    'learning_rate': 0.05, 
    'num_leaves': 32, 
    'num_iteration': 500, 
    'verbose': 0 
}
#开始训练
model = lgb.train(params,lgb_train,valid_sets=lgb_eval,early_stopping_rounds=100,verbose_eval=10)
  
 

#特征的重要性分布如下

lgb.plot_importance(model,figsize=(18,20))
 
 

#预测
pred = model.predict(test_X)
sub = pd.DataFrame()
sub['SK_ID_CURR'] = test_id
sub['TARGET'] = pred
#保存结果
sub.to_csv("baseline_submission.csv", index=False)

sub.head(10)

#换一个训练模型
#LGBMClassifier
from lightgbm import LGBMClassifier


clf = LGBMClassifier(
    n_estimators=300,
    num_leaves=15,
    colsample_bytree=.8,
    subsample=.8,
    max_depth=7,
    reg_alpha=.1,
    reg_lambda=.1,
    min_split_gain=0.01)
#开始训练
clf.fit(x_train,
       y_train,
       eval_set=[(x_train,y_train),(x_val,y_val)],
       eval_metric='auc',
       verbose=0,
       early_stopping_rounds=30)

#预测
pred_1 = clf.predict(test_X)
sub = pd.DataFrame()
sub['SK_ID_CURR'] = test_id
sub['TARGET'] = pred_1
sub.to_csv("submission_clf.csv", index=False)
sub.head(10)

以上便是通过客户提供的信息预测客户有可能违约的模型实现过程,这里我将有数据都纳如到训练中,当然也可以根据你你自己的判断和思考去掉某些属性;也可以对其中的一些数值型属性进行分段划分。另外也可以用其他你认为更好的算法来训练模型,欢迎流言交流。

版权声明:本文为博主原创文章,遵循 CC 4.0 BY-SA 版权协议,转载请附上原文出处链接和本声明。
本文链接:https://blog.csdn.net/rh8866/article/details/106784512

智能推荐

攻防世界_难度8_happy_puzzle_攻防世界困难模式攻略图文-程序员宅基地

文章浏览阅读645次。这个肯定是末尾的IDAT了,因为IDAT必须要满了才会开始一下个IDAT,这个明显就是末尾的IDAT了。,对应下面的create_head()代码。,对应下面的create_tail()代码。不要考虑爆破,我已经试了一下,太多情况了。题目来源:UNCTF。_攻防世界困难模式攻略图文

达梦数据库的导出(备份)、导入_达梦数据库导入导出-程序员宅基地

文章浏览阅读2.9k次,点赞3次,收藏10次。偶尔会用到,记录、分享。1. 数据库导出1.1 切换到dmdba用户su - dmdba1.2 进入达梦数据库安装路径的bin目录,执行导库操作  导出语句:./dexp cwy_init/[email protected]:5236 file=cwy_init.dmp log=cwy_init_exp.log 注释:   cwy_init/init_123..._达梦数据库导入导出

js引入kindeditor富文本编辑器的使用_kindeditor.js-程序员宅基地

文章浏览阅读1.9k次。1. 在官网上下载KindEditor文件,可以删掉不需要要到的jsp,asp,asp.net和php文件夹。接着把文件夹放到项目文件目录下。2. 修改html文件,在页面引入js文件:<script type="text/javascript" src="./kindeditor/kindeditor-all.js"></script><script type="text/javascript" src="./kindeditor/lang/zh-CN.js"_kindeditor.js

STM32学习过程记录11——基于STM32G431CBU6硬件SPI+DMA的高效WS2812B控制方法-程序员宅基地

文章浏览阅读2.3k次,点赞6次,收藏14次。SPI的详情简介不必赘述。假设我们通过SPI发送0xAA,我们的数据线就会变为10101010,通过修改不同的内容,即可修改SPI中0和1的持续时间。比如0xF0即为前半周期为高电平,后半周期为低电平的状态。在SPI的通信模式中,CPHA配置会影响该实验,下图展示了不同采样位置的SPI时序图[1]。CPOL = 0,CPHA = 1:CLK空闲状态 = 低电平,数据在下降沿采样,并在上升沿移出CPOL = 0,CPHA = 0:CLK空闲状态 = 低电平,数据在上升沿采样,并在下降沿移出。_stm32g431cbu6

计算机网络-数据链路层_接收方收到链路层数据后,使用crc检验后,余数为0,说明链路层的传输时可靠传输-程序员宅基地

文章浏览阅读1.2k次,点赞2次,收藏8次。数据链路层习题自测问题1.数据链路(即逻辑链路)与链路(即物理链路)有何区别?“电路接通了”与”数据链路接通了”的区别何在?2.数据链路层中的链路控制包括哪些功能?试讨论数据链路层做成可靠的链路层有哪些优点和缺点。3.网络适配器的作用是什么?网络适配器工作在哪一层?4.数据链路层的三个基本问题(帧定界、透明传输和差错检测)为什么都必须加以解决?5.如果在数据链路层不进行帧定界,会发生什么问题?6.PPP协议的主要特点是什么?为什么PPP不使用帧的编号?PPP适用于什么情况?为什么PPP协议不_接收方收到链路层数据后,使用crc检验后,余数为0,说明链路层的传输时可靠传输

软件测试工程师移民加拿大_无证移民,未受过软件工程师的教育(第1部分)-程序员宅基地

文章浏览阅读587次。软件测试工程师移民加拿大 无证移民,未受过软件工程师的教育(第1部分) (Undocumented Immigrant With No Education to Software Engineer(Part 1))Before I start, I want you to please bear with me on the way I write, I have very little gen...

随便推点

Thinkpad X250 secure boot failed 启动失败问题解决_安装完系统提示secureboot failure-程序员宅基地

文章浏览阅读304次。Thinkpad X250笔记本电脑,装的是FreeBSD,进入BIOS修改虚拟化配置(其后可能是误设置了安全开机),保存退出后系统无法启动,显示:secure boot failed ,把自己惊出一身冷汗,因为这台笔记本刚好还没开始做备份.....根据错误提示,到bios里面去找相关配置,在Security里面找到了Secure Boot选项,发现果然被设置为Enabled,将其修改为Disabled ,再开机,终于正常启动了。_安装完系统提示secureboot failure

C++如何做字符串分割(5种方法)_c++ 字符串分割-程序员宅基地

文章浏览阅读10w+次,点赞93次,收藏352次。1、用strtok函数进行字符串分割原型: char *strtok(char *str, const char *delim);功能:分解字符串为一组字符串。参数说明:str为要分解的字符串,delim为分隔符字符串。返回值:从str开头开始的一个个被分割的串。当没有被分割的串时则返回NULL。其它:strtok函数线程不安全,可以使用strtok_r替代。示例://借助strtok实现split#include <string.h>#include <stdio.h&_c++ 字符串分割

2013第四届蓝桥杯 C/C++本科A组 真题答案解析_2013年第四届c a组蓝桥杯省赛真题解答-程序员宅基地

文章浏览阅读2.3k次。1 .高斯日记 大数学家高斯有个好习惯:无论如何都要记日记。他的日记有个与众不同的地方,他从不注明年月日,而是用一个整数代替,比如:4210后来人们知道,那个整数就是日期,它表示那一天是高斯出生后的第几天。这或许也是个好习惯,它时时刻刻提醒着主人:日子又过去一天,还有多少时光可以用于浪费呢?高斯出生于:1777年4月30日。在高斯发现的一个重要定理的日记_2013年第四届c a组蓝桥杯省赛真题解答

基于供需算法优化的核极限学习机(KELM)分类算法-程序员宅基地

文章浏览阅读851次,点赞17次,收藏22次。摘要:本文利用供需算法对核极限学习机(KELM)进行优化,并用于分类。

metasploitable2渗透测试_metasploitable2怎么进入-程序员宅基地

文章浏览阅读1.1k次。一、系统弱密码登录1、在kali上执行命令行telnet 192.168.26.1292、Login和password都输入msfadmin3、登录成功,进入系统4、测试如下:二、MySQL弱密码登录:1、在kali上执行mysql –h 192.168.26.129 –u root2、登录成功,进入MySQL系统3、测试效果:三、PostgreSQL弱密码登录1、在Kali上执行psql -h 192.168.26.129 –U post..._metasploitable2怎么进入

Python学习之路:从入门到精通的指南_python人工智能开发从入门到精通pdf-程序员宅基地

文章浏览阅读257次。本文将为初学者提供Python学习的详细指南,从Python的历史、基础语法和数据类型到面向对象编程、模块和库的使用。通过本文,您将能够掌握Python编程的核心概念,为今后的编程学习和实践打下坚实基础。_python人工智能开发从入门到精通pdf

推荐文章

热门文章

相关标签