PyTorch框架学习二十——模型微调(Finetune)_finetune_hf.py 增加deep框架-程序员宅基地

技术标签: PyTorch  深度学习  pytorch  神经网络  

因为模型微调的内容没有实际使用过,但是后面是肯定会要了解的,所以这里算是一个引子,简单从概念上介绍一下迁移学习与模型微调,后面有时间或需要用到时再去详细了解。

一、Transfer Learning:迁移学习

是机器学习(ML)的一项分支,主要研究源域的知识如何应用到目标域。将源域所学习到的知识应用到目标任务当中,用于提升在目标任务里模型的性能

所以迁移学习的主要目的就是借助其他的知识提升模型性能。

详细了解可以参考这篇综述:《A Survey on Transfer Learning》

二、Model Finetune:模型的迁移学习

训练一个Model,就是去更新它的权值,这里的权值可以称为知识,从AlexNet的卷积核可视化中,我们可以看到大多数卷积核为边缘等信息,这些信息就是AlexNet在ImageNet上学习到的知识,所以可以把权值理解为神经网络在特定任务中学习到的知识,而这些知识可以迁移,将其迁移到新任务中,这样就完成了一个Transfer Learning,这就是模型微调,这就是为什么称Model Finetune为Transfer Learning,它其实是将权值认为是知识,把这些知识应用到新任务中去。

为什么要 Model Finetune?

一般来说需要模型微调的任务都有如下特点:在新任务中数据量较小,不足以训练一个较大的Model。可以用Model Finetune的方式辅助我们在新任务中训练一个较好的模型,让训练过程更快。

模型微调的步骤

一般来说,一个神经网络模型可以分为Features ExtractorClassifer两部分,前者用于提取特征,后者用于合理分类,通常我们习惯对Features Extractor的结构和参数进行保留,而仅修改Classifer来适应新任务。这是因为新任务的数据量太小,预训练参数已经具有共性,不再需要改变,如果再用这些小数据训练,可能反而过拟合。

所以步骤如下:

  1. 获取预训练模型参数
  2. 加载参数至模型(load_state_dict)
  3. 修改输出层以适应新任务

模型微调训练方法

因为需要保留Features Extractor的结构和参数,提出了两种训练方法:

  1. 固定预训练的参数:requires_grad = False 或者 lr = 0,即不更新参数;
  2. Features Extractor部分设置很小的学习率,这里用到参数组(params_group)的概念,分组设置优化器的参数。

三、看个例子:用ResNet18预训练模型训练一个图片二分类任务

涉及到的data:https://pan.baidu.com/s/115grxHrq6kMZBg6oC2fatg
提取码:yld7

# -*- coding: utf-8 -*-
import os
import numpy as np
import torch
import torch.nn as nn
from torch.utils.data import DataLoader
import torchvision.transforms as transforms
import torch.optim as optim
from matplotlib import pyplot as plt

import sys
hello_pytorch_DIR = os.path.abspath(os.path.dirname(__file__)+os.path.sep+".."+os.path.sep+"..")
sys.path.append(hello_pytorch_DIR)

from tools.my_dataset import AntsDataset
from tools.common_tools import set_seed
import torchvision.models as models
import torchvision
BASEDIR = os.path.dirname(os.path.abspath(__file__))
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
print("use device :{}".format(device))

set_seed(1)  # 设置随机种子
label_name = {
    "ants": 0, "bees": 1}

# 参数设置
MAX_EPOCH = 25
BATCH_SIZE = 16
LR = 0.001
log_interval = 10
val_interval = 1
classes = 2
start_epoch = -1
lr_decay_step = 7

# ============================ step 1/5 数据 ============================
data_dir = os.path.abspath(os.path.join(BASEDIR, "..", "..", "data", "hymenoptera_data"))
if not os.path.exists(data_dir):
    raise Exception("\n{} 不存在,请下载 07-02-数据-模型finetune.zip  放到\n{} 下,并解压即可".format(
        data_dir, os.path.dirname(data_dir)))

train_dir = os.path.join(data_dir, "train")
valid_dir = os.path.join(data_dir, "val")

norm_mean = [0.485, 0.456, 0.406]
norm_std = [0.229, 0.224, 0.225]

train_transform = transforms.Compose([
    transforms.RandomResizedCrop(224),
    transforms.RandomHorizontalFlip(),
    transforms.ToTensor(),
    transforms.Normalize(norm_mean, norm_std),
])

valid_transform = transforms.Compose([
    transforms.Resize(256),
    transforms.CenterCrop(224),
    transforms.ToTensor(),
    transforms.Normalize(norm_mean, norm_std),
])

# 构建MyDataset实例
train_data = AntsDataset(data_dir=train_dir, transform=train_transform)
valid_data = AntsDataset(data_dir=valid_dir, transform=valid_transform)

# 构建DataLoder
train_loader = DataLoader(dataset=train_data, batch_size=BATCH_SIZE, shuffle=True)
valid_loader = DataLoader(dataset=valid_data, batch_size=BATCH_SIZE)

# ============================ step 2/5 模型 ============================

# 1/3 构建模型
resnet18_ft = models.resnet18()

# 2/3 加载参数
# flag = 0
flag = 1
if flag:
    path_pretrained_model = os.path.join(BASEDIR, "..", "..", "data", "finetune_resnet18-5c106cde.pth")
    if not os.path.exists(path_pretrained_model):
        raise Exception("\n{} 不存在,请下载 07-02-数据-模型finetune.zip\n放到 {}下,并解压即可".format(
            path_pretrained_model, os.path.dirname(path_pretrained_model)))
    state_dict_load = torch.load(path_pretrained_model)
    resnet18_ft.load_state_dict(state_dict_load)

# 法1 : 冻结卷积层
flag_m1 = 0
# flag_m1 = 1
if flag_m1:
    for param in resnet18_ft.parameters():
        param.requires_grad = False
    print("conv1.weights[0, 0, ...]:\n {}".format(resnet18_ft.conv1.weight[0, 0, ...]))


# 3/3 替换fc层
num_ftrs = resnet18_ft.fc.in_features
resnet18_ft.fc = nn.Linear(num_ftrs, classes)


resnet18_ft.to(device)
# ============================ step 3/5 损失函数 ============================
criterion = nn.CrossEntropyLoss()                                                   # 选择损失函数

# ============================ step 4/5 优化器 ============================
# 法2 : conv 小学习率
# flag = 0
flag = 1
if flag:
    fc_params_id = list(map(id, resnet18_ft.fc.parameters()))     # 返回的是parameters的 内存地址
    base_params = filter(lambda p: id(p) not in fc_params_id, resnet18_ft.parameters())
    optimizer = optim.SGD([
        {
    'params': base_params, 'lr': LR*0},   # 0
        {
    'params': resnet18_ft.fc.parameters(), 'lr': LR}], momentum=0.9)

else:
    optimizer = optim.SGD(resnet18_ft.parameters(), lr=LR, momentum=0.9)               # 选择优化器

scheduler = torch.optim.lr_scheduler.StepLR(optimizer, step_size=lr_decay_step, gamma=0.1)     # 设置学习率下降策略


# ============================ step 5/5 训练 ============================
train_curve = list()
valid_curve = list()

for epoch in range(start_epoch + 1, MAX_EPOCH):

    loss_mean = 0.
    correct = 0.
    total = 0.

    resnet18_ft.train()
    for i, data in enumerate(train_loader):

        # forward
        inputs, labels = data
        inputs, labels = inputs.to(device), labels.to(device)
        outputs = resnet18_ft(inputs)

        # backward
        optimizer.zero_grad()
        loss = criterion(outputs, labels)
        loss.backward()

        # update weights
        optimizer.step()

        # 统计分类情况
        _, predicted = torch.max(outputs.data, 1)
        total += labels.size(0)
        correct += (predicted == labels).squeeze().cpu().sum().numpy()

        # 打印训练信息
        loss_mean += loss.item()
        train_curve.append(loss.item())
        if (i+1) % log_interval == 0:
            loss_mean = loss_mean / log_interval
            print("Training:Epoch[{:0>3}/{:0>3}] Iteration[{:0>3}/{:0>3}] Loss: {:.4f} Acc:{:.2%}".format(
                epoch, MAX_EPOCH, i+1, len(train_loader), loss_mean, correct / total))
            loss_mean = 0.

            # if flag_m1:
            print("epoch:{} conv1.weights[0, 0, ...] :\n {}".format(epoch, resnet18_ft.conv1.weight[0, 0, ...]))

    scheduler.step()  # 更新学习率

    # validate the model
    if (epoch+1) % val_interval == 0:

        correct_val = 0.
        total_val = 0.
        loss_val = 0.
        resnet18_ft.eval()
        with torch.no_grad():
            for j, data in enumerate(valid_loader):
                inputs, labels = data
                inputs, labels = inputs.to(device), labels.to(device)

                outputs = resnet18_ft(inputs)
                loss = criterion(outputs, labels)

                _, predicted = torch.max(outputs.data, 1)
                total_val += labels.size(0)
                correct_val += (predicted == labels).squeeze().cpu().sum().numpy()

                loss_val += loss.item()

            loss_val_mean = loss_val/len(valid_loader)
            valid_curve.append(loss_val_mean)
            print("Valid:\t Epoch[{:0>3}/{:0>3}] Iteration[{:0>3}/{:0>3}] Loss: {:.4f} Acc:{:.2%}".format(
                epoch, MAX_EPOCH, j+1, len(valid_loader), loss_val_mean, correct_val / total_val))
        resnet18_ft.train()

train_x = range(len(train_curve))
train_y = train_curve

train_iters = len(train_loader)
valid_x = np.arange(1, len(valid_curve)+1) * train_iters*val_interval # 由于valid中记录的是epochloss,需要对记录点进行转换到iterations
valid_y = valid_curve

plt.plot(train_x, train_y, label='Train')
plt.plot(valid_x, valid_y, label='Valid')

plt.legend(loc='upper right')
plt.ylabel('loss value')
plt.xlabel('Iteration')
plt.show()

输出结果为:

use device :cpu
Training:Epoch[000/025] Iteration[010/016] Loss: 0.6572 Acc:60.62%
epoch:0 conv1.weights[0, 0, ...] :
 tensor([[-0.0104, -0.0061, -0.0018,  0.0748,  0.0566,  0.0171, -0.0127],
        [ 0.0111,  0.0095, -0.1099, -0.2805, -0.2712, -0.1291,  0.0037],
        [-0.0069,  0.0591,  0.2955,  0.5872,  0.5197,  0.2563,  0.0636],
        [ 0.0305, -0.0670, -0.2984, -0.4387, -0.2709, -0.0006,  0.0576],
        [-0.0275,  0.0160,  0.0726, -0.0541, -0.3328, -0.4206, -0.2578],
        [ 0.0306,  0.0410,  0.0628,  0.2390,  0.4138,  0.3936,  0.1661],
        [-0.0137, -0.0037, -0.0241, -0.0659, -0.1507, -0.0822, -0.0058]],
       grad_fn=<SelectBackward>)
Valid:	 Epoch[000/025] Iteration[010/010] Loss: 0.4565 Acc:84.97%
Training:Epoch[001/025] Iteration[010/016] Loss: 0.4074 Acc:85.00%
epoch:1 conv1.weights[0, 0, ...] :
 tensor([[-0.0104, -0.0061, -0.0018,  0.0748,  0.0566,  0.0171, -0.0127],
        [ 0.0111,  0.0095, -0.1099, -0.2805, -0.2712, -0.1291,  0.0037],
        [-0.0069,  0.0591,  0.2955,  0.5872,  0.5197,  0.2563,  0.0636],
        [ 0.0305, -0.0670, -0.2984, -0.4387, -0.2709, -0.0006,  0.0576],
        [-0.0275,  0.0160,  0.0726, -0.0541, -0.3328, -0.4206, -0.2578],
        [ 0.0306,  0.0410,  0.0628,  0.2390,  0.4138,  0.3936,  0.1661],
        [-0.0137, -0.0037, -0.0241, -0.0659, -0.1507, -0.0822, -0.0058]],
       grad_fn=<SelectBackward>)
Valid:	 Epoch[001/025] Iteration[010/010] Loss: 0.2846 Acc:93.46%
Training:Epoch[002/025] Iteration[010/016] Loss: 0.3542 Acc:83.12%
epoch:2 conv1.weights[0, 0, ...] :
 tensor([[-0.0104, -0.0061, -0.0018,  0.0748,  0.0566,  0.0171, -0.0127],
        [ 0.0111,  0.0095, -0.1099, -0.2805, -0.2712, -0.1291,  0.0037],
        [-0.0069,  0.0591,  0.2955,  0.5872,  0.5197,  0.2563,  0.0636],
        [ 0.0305, -0.0670, -0.2984, -0.4387, -0.2709, -0.0006,  0.0576],
        [-0.0275,  0.0160,  0.0726, -0.0541, -0.3328, -0.4206, -0.2578],
        [ 0.0306,  0.0410,  0.0628,  0.2390,  0.4138,  0.3936,  0.1661],
        [-0.0137, -0.0037, -0.0241, -0.0659, -0.1507, -0.0822, -0.0058]],
       grad_fn=<SelectBackward>)
Valid:	 Epoch[002/025] Iteration[010/010] Loss: 0.2904 Acc:89.54%
Training:Epoch[003/025] Iteration[010/016] Loss: 0.2266 Acc:93.12%
epoch:3 conv1.weights[0, 0, ...] :
 tensor([[-0.0104, -0.0061, -0.0018,  0.0748,  0.0566,  0.0171, -0.0127],
        [ 0.0111,  0.0095, -0.1099, -0.2805, -0.2712, -0.1291,  0.0037],
        [-0.0069,  0.0591,  0.2955,  0.5872,  0.5197,  0.2563,  0.0636],
        [ 0.0305, -0.0670, -0.2984, -0.4387, -0.2709, -0.0006,  0.0576],
        [-0.0275,  0.0160,  0.0726, -0.0541, -0.3328, -0.4206, -0.2578],
        [ 0.0306,  0.0410,  0.0628,  0.2390,  0.4138,  0.3936,  0.1661],
        [-0.0137, -0.0037, -0.0241, -0.0659, -0.1507, -0.0822, -0.0058]],
       grad_fn=<SelectBackward>)
Valid:	 Epoch[003/025] Iteration[010/010] Loss: 0.2252 Acc:94.12%
Training:Epoch[004/025] Iteration[010/016] Loss: 0.2805 Acc:87.50%
epoch:4 conv1.weights[0, 0, ...] :
 tensor([[-0.0104, -0.0061, -0.0018,  0.0748,  0.0566,  0.0171, -0.0127],
        [ 0.0111,  0.0095, -0.1099, -0.2805, -0.2712, -0.1291,  0.0037],
        [-0.0069,  0.0591,  0.2955,  0.5872,  0.5197,  0.2563,  0.0636],
        [ 0.0305, -0.0670, -0.2984, -0.4387, -0.2709, -0.0006,  0.0576],
        [-0.0275,  0.0160,  0.0726, -0.0541, -0.3328, -0.4206, -0.2578],
        [ 0.0306,  0.0410,  0.0628,  0.2390,  0.4138,  0.3936,  0.1661],
        [-0.0137, -0.0037, -0.0241, -0.0659, -0.1507, -0.0822, -0.0058]],
       grad_fn=<SelectBackward>)
Valid:	 Epoch[004/025] Iteration[010/010] Loss: 0.1953 Acc:95.42%
Training:Epoch[005/025] Iteration[010/016] Loss: 0.2423 Acc:91.88%
epoch:5 conv1.weights[0, 0, ...] :
 tensor([[-0.0104, -0.0061, -0.0018,  0.0748,  0.0566,  0.0171, -0.0127],
        [ 0.0111,  0.0095, -0.1099, -0.2805, -0.2712, -0.1291,  0.0037],
        [-0.0069,  0.0591,  0.2955,  0.5872,  0.5197,  0.2563,  0.0636],
        [ 0.0305, -0.0670, -0.2984, -0.4387, -0.2709, -0.0006,  0.0576],
        [-0.0275,  0.0160,  0.0726, -0.0541, -0.3328, -0.4206, -0.2578],
        [ 0.0306,  0.0410,  0.0628,  0.2390,  0.4138,  0.3936,  0.1661],
        [-0.0137, -0.0037, -0.0241, -0.0659, -0.1507, -0.0822, -0.0058]],
       grad_fn=<SelectBackward>)
Valid:	 Epoch[005/025] Iteration[010/010] Loss: 0.2399 Acc:92.16%
Training:Epoch[006/025] Iteration[010/016] Loss: 0.2455 Acc:90.00%
epoch:6 conv1.weights[0, 0, ...] :
 tensor([[-0.0104, -0.0061, -0.0018,  0.0748,  0.0566,  0.0171, -0.0127],
        [ 0.0111,  0.0095, -0.1099, -0.2805, -0.2712, -0.1291,  0.0037],
        [-0.0069,  0.0591,  0.2955,  0.5872,  0.5197,  0.2563,  0.0636],
        [ 0.0305, -0.0670, -0.2984, -0.4387, -0.2709, -0.0006,  0.0576],
        [-0.0275,  0.0160,  0.0726, -0.0541, -0.3328, -0.4206, -0.2578],
        [ 0.0306,  0.0410,  0.0628,  0.2390,  0.4138,  0.3936,  0.1661],
        [-0.0137, -0.0037, -0.0241, -0.0659, -0.1507, -0.0822, -0.0058]],
       grad_fn=<SelectBackward>)

可以看出,模型的训练从一开始就有了较高的准确率,比较快速地进入了较好训练状态,相比于不借助其他知识的普通训练,速度上要快很多。

而且这里是用分组参数的方法将特征提取部分的学习率设置为0,这样就不改变特征提取部分的参数了,而将全连接层的学习率正常设置,从上面的结果也能看出特征提取部分的权值一直没有改变(改变的是全连接层的权值,所以准确率才会提升)。

ps:这次笔记涉及的迁移学习的知识还只是基础,以后若有需要还要更加深入。

版权声明:本文为博主原创文章,遵循 CC 4.0 BY-SA 版权协议,转载请附上原文出处链接和本声明。
本文链接:https://blog.csdn.net/qq_40467656/article/details/108938339

智能推荐

while循环&CPU占用率高问题深入分析与解决方案_main函数使用while(1)循环cpu占用99-程序员宅基地

文章浏览阅读3.8k次,点赞9次,收藏28次。直接上一个工作中碰到的问题,另外一个系统开启多线程调用我这边的接口,然后我这边会开启多线程批量查询第三方接口并且返回给调用方。使用的是两三年前别人遗留下来的方法,放到线上后发现确实是可以正常取到结果,但是一旦调用,CPU占用就直接100%(部署环境是win server服务器)。因此查看了下相关的老代码并使用JProfiler查看发现是在某个while循环的时候有问题。具体项目代码就不贴了,类似于下面这段代码。​​​​​​while(flag) {//your code;}这里的flag._main函数使用while(1)循环cpu占用99

【无标题】jetbrains idea shift f6不生效_idea shift +f6快捷键不生效-程序员宅基地

文章浏览阅读347次。idea shift f6 快捷键无效_idea shift +f6快捷键不生效

node.js学习笔记之Node中的核心模块_node模块中有很多核心模块,以下不属于核心模块,使用时需下载的是-程序员宅基地

文章浏览阅读135次。Ecmacript 中没有DOM 和 BOM核心模块Node为JavaScript提供了很多服务器级别,这些API绝大多数都被包装到了一个具名和核心模块中了,例如文件操作的 fs 核心模块 ,http服务构建的http 模块 path 路径操作模块 os 操作系统信息模块// 用来获取机器信息的var os = require('os')// 用来操作路径的var path = require('path')// 获取当前机器的 CPU 信息console.log(os.cpus._node模块中有很多核心模块,以下不属于核心模块,使用时需下载的是

数学建模【SPSS 下载-安装、方差分析与回归分析的SPSS实现(软件概述、方差分析、回归分析)】_化工数学模型数据回归软件-程序员宅基地

文章浏览阅读10w+次,点赞435次,收藏3.4k次。SPSS 22 下载安装过程7.6 方差分析与回归分析的SPSS实现7.6.1 SPSS软件概述1 SPSS版本与安装2 SPSS界面3 SPSS特点4 SPSS数据7.6.2 SPSS与方差分析1 单因素方差分析2 双因素方差分析7.6.3 SPSS与回归分析SPSS回归分析过程牙膏价格问题的回归分析_化工数学模型数据回归软件

利用hutool实现邮件发送功能_hutool发送邮件-程序员宅基地

文章浏览阅读7.5k次。如何利用hutool工具包实现邮件发送功能呢?1、首先引入hutool依赖<dependency> <groupId>cn.hutool</groupId> <artifactId>hutool-all</artifactId> <version>5.7.19</version></dependency>2、编写邮件发送工具类package com.pc.c..._hutool发送邮件

docker安装elasticsearch,elasticsearch-head,kibana,ik分词器_docker安装kibana连接elasticsearch并且elasticsearch有密码-程序员宅基地

文章浏览阅读867次,点赞2次,收藏2次。docker安装elasticsearch,elasticsearch-head,kibana,ik分词器安装方式基本有两种,一种是pull的方式,一种是Dockerfile的方式,由于pull的方式pull下来后还需配置许多东西且不便于复用,个人比较喜欢使用Dockerfile的方式所有docker支持的镜像基本都在https://hub.docker.com/docker的官网上能找到合..._docker安装kibana连接elasticsearch并且elasticsearch有密码

随便推点

Python 攻克移动开发失败!_beeware-程序员宅基地

文章浏览阅读1.3w次,点赞57次,收藏92次。整理 | 郑丽媛出品 | CSDN(ID:CSDNnews)近年来,随着机器学习的兴起,有一门编程语言逐渐变得火热——Python。得益于其针对机器学习提供了大量开源框架和第三方模块,内置..._beeware

Swift4.0_Timer 的基本使用_swift timer 暂停-程序员宅基地

文章浏览阅读7.9k次。//// ViewController.swift// Day_10_Timer//// Created by dongqiangfei on 2018/10/15.// Copyright 2018年 飞飞. All rights reserved.//import UIKitclass ViewController: UIViewController { ..._swift timer 暂停

元素三大等待-程序员宅基地

文章浏览阅读986次,点赞2次,收藏2次。1.硬性等待让当前线程暂停执行,应用场景:代码执行速度太快了,但是UI元素没有立马加载出来,造成两者不同步,这时候就可以让代码等待一下,再去执行找元素的动作线程休眠,强制等待 Thread.sleep(long mills)package com.example.demo;import org.junit.jupiter.api.Test;import org.openqa.selenium.By;import org.openqa.selenium.firefox.Firefox.._元素三大等待

Java软件工程师职位分析_java岗位分析-程序员宅基地

文章浏览阅读3k次,点赞4次,收藏14次。Java软件工程师职位分析_java岗位分析

Java:Unreachable code的解决方法_java unreachable code-程序员宅基地

文章浏览阅读2k次。Java:Unreachable code的解决方法_java unreachable code

标签data-*自定义属性值和根据data属性值查找对应标签_如何根据data-*属性获取对应的标签对象-程序员宅基地

文章浏览阅读1w次。1、html中设置标签data-*的值 标题 11111 222222、点击获取当前标签的data-url的值$('dd').on('click', function() { var urlVal = $(this).data('ur_如何根据data-*属性获取对应的标签对象

推荐文章

热门文章

相关标签