OmniQuant-程序员宅基地

技术标签: 人工智能  

模型量化是模型压缩与加速中的一项关键技术,其将模型权重与激活值量化至低 bit,以允许模型占用更少的内存开销并加快推理速度。对于具有海量参数的大语言模型而言,模型量化显得更加重要。例如,GPT-3 模型的 175B 参数当使用 FP16 格式加载时,需消耗 350GB 的内存,需要至少 5 张 80GB 的 A100 GPU。

但若是可以将 GPT-3 模型的权重压缩至 3bit,则可以实现单张 A100-80GB 完成所有模型权重的加载。大语言模型权重、激活的全方位低bit可微量化,已集成进商用APP

现有的大语言模型后训练量化算法依赖于手工制定量化参数,优于缺乏相应的优化过程,导致面对低 bit 量化时,现有的方法都表现出显著的性能下降。尽管量化感知训练在确定最佳量化配置方面是有效的,但它需要引入大量额外的训练开销和训练数据。尤其是大语言模型本身的计算量进一步阻碍了量化感知训练在大预言模型量化上的应用。

这引出一个问题:我们能否在保持后训练量化的时间和数据效率的同时,达到量化感知训练的性能?

为了解决大语言模型后训练量化中的量化参数优化问题,来自上海人工智能实验室、香港大学、香港中文大学的研究者们提出了《OmniQuant: Omnidirectionally Calibrated Quantization for Large Language Models》。该算法同时支持大语言模型中的权重与激活值的量化,且覆盖多种量化 bit 位设置。

arXiv 论文地址:https://arxiv.org/abs/2308.13137

OpenReview 论文地址:https://openreview.net/forum?id=8Wuvhh0LYW

代码地址:https://github.com/OpenGVLab/OmniQuant

框架方法

如上图所示,OmniQuant 是一种针对大语言模型(LLM)的可微分量化技术,同时支持仅权重量化和权重激活值同时量化。并且,其在实现高性能量化模型的同时,保持了后训练量化的训练时间高效性和数据高效性。例如,OmniQuant 可在单卡 A100-40GB 上,在 1-16 小时内完成对 LLaMA-7B ~ LLaMA70B 模型量化参数的更新。

为了达到这个目标,OmniQuant 采用了一个 Block-wise 量化误差最小化框架。同时,OmniQuant 设计了两种新颖的策略来增加可学习的量化参数,包括可学习的权重裁剪(Learnable Weight Clipping,LWC),以减轻量化权重的难度,以及一个可学习的等价转换(Learnable Equivalent Transformation, LET),进一步将量化的挑战从激活值转移到权重。

此外,OmniQuant 引入的所有可学习参数在量化完成后可以被融合消除,量化模型可以基于现有工具完成在多平台的部署,包括 GPU、Android、IOS 等等。

Block-wise 量化误差最小化

OmniQuant 提出了一个新的优化流程,该流程采用 Block-wise 量化误差最小化,并且以可微分的方式优化额外的量化参数。其中,优化目标公式化如下:

可学习的权重裁剪 (LWC)

等价转换在模型权重和激活值之间进行量级迁移。OmniQuant 采用的可学习等价转换使得在参数优化过程中会使得模型权重的分布随着训练不断地发生改变。此前直接学习权重裁剪阈值的方法 [1,2] 只适用于权重分布不发生剧烈改变的情况,否则会难以收敛。基于此问题,与以往方法直接学习权重裁剪阈值不同,LWC 通过以下方式优化裁剪强度:

可学习的等价转换 (LET)

除了通过优化裁剪阈值来实现更适合量化的权重的 LWC 之外,OmniQuant 通过 LET 进一步降低激活值的量化难度。考虑到 LLM 激活值中的异常值是存在于特定通道,以前的方法如 SmoothQuant [3], Outlier Supression+[4] 通过数学上的等价转换将量化的难度从激活值转移到权重。

然而,手工选择或者贪心搜索得到的等价转换参数会限制量化模型的性能。得益于 Block-wise 量化误差最小化的引入,OmniQuant 的 LET 可以以一种可微分的方式确定最优的等价转换参数。受 Outlier Suppression+~\citep {outlier-plus} 的启发,采用了通道级的缩放和通道级的移位来操纵激活分布,为激活值中的异常值问题提供了一个有效的解决方案。具体来说,OmniQuant 探索了线性层和注意力操作中的等价转换。

其中 Q_a 是普通的 MinMax 量化器,Q_w 是带有可学习权重裁剪(即所提出的 LWC)的 MinMax 量化器。

注意力操作中的等价转换:除了线性层之外,注意力操作也占据了 LLM 的大部分计算。此外,LLM 的自回归推理模式需要为每个 token 存储键值(KV)缓存,这对于长序列来说导致了巨大的内存需求。因此,OmniQuant 也考虑将自主力计算中的 Q/K/V 矩阵量化为低位。具体来说,自注意力矩阵中的可学习等效变换可以写为:

伪代码

OmniQuant 的伪算法如上图所示。注意,LWC 与 LET 引入的额外参数在模型量化完后都可以被消除,即 OmniQuant 不会给量化模型引入任何额外开销,因此其可直接适配于现有的量化部署工具。

实验性能

上图显示了 OmniQuant 在 LLaMA 模型上仅权重量化结果的实验结果,更多 OPT 模型结果详见原文。可以看出,OmniQuant 在各种 LLM 模型(OPT、LLaMA-1、LLaMA-2)以及多样化的量化配置(包括 W2A16、W2A16g128、W2A16g64、W3A16、W3A16g128、W4A16 和 W4A16g128)中,始终优于以前的 LLM 仅权重量化方法。同时,这些实验表明了 OmniQuant 的通用性,能够适应多种量化配置。例如,尽管 AWQ [5] 在分组量化方面特别有效,但 OmniQuant 在通道级和分组级量化中均显示出更优的性能。此外,随着量化比特位数的减少,OmniQuant 的性能优势变得更加明显。            whaosoft aiot http://143ai.com

在权重和激活值都量化的设置中中,实验主要关注点在于 W6A6 和 W4A4 量化。实验设置中排除了 W8A8 量化,因为与全精度模型相比,此前的 SmoothQuant 几乎可以实现无损的 W8A8 模型量化。上图显示了 OmniQuant 在 LLaMA 模型上权重激活值都量化结果的实验结果。值得注意的是,在 W4A4 量化的不同模型中,OmniQuant 显著提高了平均准确率,增幅在 + 4.99% ∼ +11.80% 之间。特别是在 LLaMA-7B 模型中,OmniQuant 甚至以 + 6.22% 的显著差距超越了最近的量化感知训练方法 LLM-QAT [6]。这一改进证明了引入额外可学习参数的有效性,这比量化感知训练所采用的全局权重调整更为有益。

同时,使用 OmniQuant 量化的模型可以在 MLC-LLM [7] 上实现无缝部署。上图展示了 LLaMA 系列量化模型在 NVIDIA A100-80G 上的内存需求和推理速度。

Weights Memory (WM) 代表量化权重存储,而 Running Memory (RM) 表示推理过程中的内存,后者更高是因为保留了某些激活值。推理速度是通过生成 512 个令牌来衡量的。显而易见,与 16 位全精度模型相比,量化模型显著减少了内存使用。而且,W4A16g128 和 W2A16g128 量化几乎使推理速度翻倍。

值得注意的是,MLC-LLM [7] 也支持 OmniQuant 量化模型在其余平台的部署,包括 Android 手机和 IOS 手机。如上图所示,近期的应用 Private LLM 即是利用 OmniQuant 算法来完成 LLM 在 iPhone、iPad,macOS 等多平台的内存高效部署。

总结

OmniQuant 是一种将量化推进到到低比特格式的先进大语言模型量化算法。OmniQuant 的核心原则是保留原始的全精度权重的同时添加可学习的量化参数。它利用可学习的权重才接和等价变换来优化权重和激活值的量化兼容性。在融合梯度更新的同时,OmniQuant 保持了与现有的 PTQ 方法相当的训练时间效率和数据效率。此外,OmniQuant 还确保了硬件兼容性,因为其添加的可训练参数可以被融合到原模型中不带来任何额外开销。

版权声明:本文为博主原创文章,遵循 CC 4.0 BY-SA 版权协议,转载请附上原文出处链接和本声明。
本文链接:https://blog.csdn.net/qq_29788741/article/details/136533080

智能推荐

leetcode 172. 阶乘后的零-程序员宅基地

文章浏览阅读63次。题目给定一个整数 n,返回 n! 结果尾数中零的数量。解题思路每个0都是由2 * 5得来的,相当于要求n!分解成质因子后2 * 5的数目,由于n中2的数目肯定是要大于5的数目,所以我们只需要求出n!中5的数目。C++代码class Solution {public: int trailingZeroes(int n) { ...

Day15-【Java SE进阶】IO流(一):File、IO流概述、File文件对象的创建、字节输入输出流FileInputStream FileoutputStream、释放资源。_outputstream释放-程序员宅基地

文章浏览阅读992次,点赞27次,收藏15次。UTF-8是Unicode字符集的一种编码方案,采取可变长编码方案,共分四个长度区:1个字节,2个字节,3个字节,4个字节。文件字节输入流:每次读取多个字节到字节数组中去,返回读取的字节数量,读取完毕会返回-1。注意1:字符编码时使用的字符集,和解码时使用的字符集必须一致,否则会出现乱码。定义一个与文件一样大的字节数组,一次性读取完文件的全部字节。UTF-8字符集:汉字占3个字节,英文、数字占1个字节。GBK字符集:汉字占2个字节,英文、数字占1个字节。GBK规定:汉字的第一个字节的第一位必须是1。_outputstream释放

jeecgboot重新登录_jeecg 登录自动退出-程序员宅基地

文章浏览阅读1.8k次,点赞3次,收藏3次。解决jeecgboot每次登录进去都会弹出请重新登录问题,在utils文件下找到request.js文件注释这段代码即可_jeecg 登录自动退出

数据中心供配电系统负荷计算实例分析-程序员宅基地

文章浏览阅读3.4k次。我国目前普遍采用需要系数法和二项式系数法确定用电设备的负荷,其中需要系数法是国际上普遍采用的确定计算负荷的方法,最为简便;而二项式系数法在确定设备台数较少且各台设备容量差..._数据中心用电负荷统计变压器

HTML5期末大作业:网页制作代码 网站设计——人电影网站(5页) HTML+CSS+JavaScript 学生DW网页设计作业成品 dreamweaver作业静态HTML网页设计模板_网页设计成品百度网盘-程序员宅基地

文章浏览阅读7k次,点赞4次,收藏46次。HTML5期末大作业:网页制作代码 网站设计——人电影网站(5页) HTML+CSS+JavaScript 学生DW网页设计作业成品 dreamweaver作业静态HTML网页设计模板常见网页设计作业题材有 个人、 美食、 公司、 学校、 旅游、 电商、 宠物、 电器、 茶叶、 家居、 酒店、 舞蹈、 动漫、 明星、 服装、 体育、 化妆品、 物流、 环保、 书籍、 婚纱、 军事、 游戏、 节日、 戒烟、 电影、 摄影、 文化、 家乡、 鲜花、 礼品、 汽车、 其他 等网页设计题目, A+水平作业_网页设计成品百度网盘

【Jailhouse 文章】Look Mum, no VM Exits_jailhouse sr-iov-程序员宅基地

文章浏览阅读392次。jailhouse 文章翻译,Look Mum, no VM Exits!_jailhouse sr-iov

随便推点

chatgpt赋能python:Python怎么删除文件中的某一行_python 删除文件特定几行-程序员宅基地

文章浏览阅读751次。本文由chatgpt生成,文章没有在chatgpt生成的基础上进行任何的修改。以上只是chatgpt能力的冰山一角。作为通用的Aigc大模型,只是展现它原本的实力。对于颠覆工作方式的ChatGPT,应该选择拥抱而不是抗拒,未来属于“会用”AI的人。AI职场汇报智能办公文案写作效率提升教程 专注于AI+职场+办公方向。下图是课程的整体大纲下图是AI职场汇报智能办公文案写作效率提升教程中用到的ai工具。_python 删除文件特定几行

Java过滤特殊字符的正则表达式_java正则表达式过滤特殊字符-程序员宅基地

文章浏览阅读2.1k次。【代码】Java过滤特殊字符的正则表达式。_java正则表达式过滤特殊字符

CSS中设置背景的7个属性及简写background注意点_background设置背景图片-程序员宅基地

文章浏览阅读5.7k次,点赞4次,收藏17次。css中背景的设置至关重要,也是一个难点,因为属性众多,对应的属性值也比较多,这里详细的列举了背景相关的7个属性及对应的属性值,并附上演示代码,后期要用的话,可以随时查看,那我们坐稳开车了······1: background-color 设置背景颜色2:background-image来设置背景图片- 语法:background-image:url(相对路径);-可以同时为一个元素指定背景颜色和背景图片,这样背景颜色将会作为背景图片的底色,一般情况下设置背景..._background设置背景图片

Win10 安装系统跳过创建用户,直接启用 Administrator_windows10msoobe进程-程序员宅基地

文章浏览阅读2.6k次,点赞2次,收藏8次。Win10 安装系统跳过创建用户,直接启用 Administrator_windows10msoobe进程

PyCharm2021安装教程-程序员宅基地

文章浏览阅读10w+次,点赞653次,收藏3k次。Windows安装pycharm教程新的改变功能快捷键合理的创建标题,有助于目录的生成如何改变文本的样式插入链接与图片如何插入一段漂亮的代码片生成一个适合你的列表创建一个表格设定内容居中、居左、居右SmartyPants创建一个自定义列表如何创建一个注脚注释也是必不可少的KaTeX数学公式新的甘特图功能,丰富你的文章UML 图表FLowchart流程图导出与导入导出导入下载安装PyCharm1、进入官网PyCharm的下载地址:http://www.jetbrains.com/pycharm/downl_pycharm2021

《跨境电商——速卖通搜索排名规则解析与SEO技术》一一1.1 初识速卖通的搜索引擎...-程序员宅基地

文章浏览阅读835次。本节书摘来自异步社区出版社《跨境电商——速卖通搜索排名规则解析与SEO技术》一书中的第1章,第1.1节,作者: 冯晓宁,更多章节内容可以访问云栖社区“异步社区”公众号查看。1.1 初识速卖通的搜索引擎1.1.1 初识速卖通搜索作为速卖通卖家都应该知道,速卖通经常被视为“国际版的淘宝”。那么请想一下,普通消费者在淘宝网上购买商品的时候,他的行为应该..._跨境电商 速卖通搜索排名规则解析与seo技术 pdf

推荐文章

热门文章

相关标签