基于深度学习的MNIST手写数字数据集识别(准确率99%,附代码)_mnist数据集99正确率-程序员宅基地

技术标签: 算法  python  机器学习  深度学习  人工智能  

1.Mnist数据集介绍

1.1 基本介绍

Mnist数据集可以算是学习深度学习最常用到的了。这个数据集包含70000张手写数字图片,分别是60000张训练图片和10000张测试图片,训练集由来自250个不同人手写的数字构成,一般来自高中生,一半来自工作人员,测试集(test set)也是同样比例的手写数字数据,并且保证了测试集和训练集的作者不同。每个图片都是2828个像素点,数据集会把一张图片的数据转成一个2828=784的一维向量存储起来。
里面的图片数据如下所示,每张图是0-9的手写数字黑底白字的图片,存储时,黑色用0表示,白色用0-1的浮点数表示。
在这里插入图片描述

1.2 数据集下载

1)官网下载

Mnist数据集的下载地址如下:http://yann.lecun.com/exdb/mnist/
打开后会有四个文件:
在这里插入图片描述

  • 训练数据集:train-images-idx3-ubyte.gz
  • 训练数据集标签:train-labels-idx1-ubyte.gz
  • 测试数据集:t10k-images-idx3-ubyte.gz
  • 测试数据集标签:t10k-labels-idx1-ubyte.gz

将这四个文件下载后放置到需要用的文件夹下即可不要解压!下载后是什么就怎么放!

2)代码导入

文件夹下运行下面的代码,即可自动检测数据集是否存在,若没有会自动进行下载,下载后在这一路径:
在这里插入图片描述

# 下载数据集
from torchvision import datasets, transforms

train_set = datasets.MNIST("data",train=True,download=True, transform=transforms.ToTensor(),)
test_set = datasets.MNIST("data",train=False,download=True, transform=transforms.ToTensor(),)

参数解释:

  • datasets.MNIST:是Pytorch的内置函数torchvision.datasets.MNIST,可以导入数据集
  • train=True :读入的数据作为训练集
  • transform:读入我们自己定义的数据预处理操作
  • download=True:当我们的根目录(root)下没有数据集时,便自动下载

如果这时候我们通过联网自动下载方式download我们的数据后,它的文件路径是以下形式:原文件夹/data/MNIST/raw

2.代码部分

2.1文件夹目录:

在这里插入图片描述

  • test:自己写的测试图片
  • main:主函数
  • model:训练的模型参数,会自动生成
  • data:数据集文件夹

2.2 运行结果

14轮左右,模型识别准确率达到99%以上
在这里插入图片描述

2.3代码

1) 导入必要的包及预处理,本人学习时做了较多注释,且用的是下载好的文件,如果是自己的请更改对应的文件目录哦。

import os
import matplotlib.pyplot as plt
import torch
from PIL import Image
from torch import nn
from torch.nn import Conv2d, Linear, ReLU
from torch.nn import MaxPool2d
from torchvision import transforms
from torchvision.datasets import MNIST
from torch.utils.data import DataLoader


# Dataset:创建数据集的函数;__init__:初始化数据内容和标签
# __geyitem:获取数据内容和标签
# __len__:获取数据集大小
# daataloader:数据加载类,接受来自dataset已经加载好的数据集
# torchbision:图形库,包含预训练模型,加载数据的函数、图片变换,裁剪、旋转等
# torchtext:处理文本的工具包,将不同类型的额文件转换为datasets

# 预处理:将两个步骤整合在一起
transform = transforms.Compose({
    
    transforms.ToTensor(),  # 将灰度图片像素值(0~255)转为Tensor(0~1),方便后续处理
    # transforms.Normalize((0.1307,),(0.3081)),    # 归一化,均值0,方差1;mean:各通道的均值std:各通道的标准差inplace:是否原地操作
})

2)加载数据集

# 加载数据集
# 训练数据集
train_data = MNIST(root='./data', train=True, transform=transform, download=True)
train_loader = DataLoader(dataset=train_data, batch_size=64, shuffle=True)
# transform:指示加载的数据集应用的数据预处理的规则,shuffle:洗牌,是否打乱输入数据顺序
# 测试数据集
test_data = MNIST(root="./data", train=False, transform=transform, download=True)
test_loader = DataLoader(dataset=test_data, batch_size=64, shuffle=True)

train_data_size = len(train_data)
test_data_size = len(test_data)
print("训练数据集的长度:{}".format(train_data_size))
print("测试数据集的长度:{}".format(test_data_size))

3)构建模型

成功运行的话请给个免费的赞吧!(调试不易)

模型主要由两个卷积层,两个池化层,以及三个全连接层构成,激活函数使用relu.

class MnistModel(nn.Module):
    def __init__(self):
        super(MnistModel, self).__init__()
        self.conv1 = Conv2d(in_channels=1, out_channels=10, kernel_size=5, stride=1, padding=0)
        self.maxpool1 = MaxPool2d(2)
        self.conv2 = Conv2d(in_channels=10, out_channels=20, kernel_size=5, stride=1, padding=0)
        self.maxpool2 = MaxPool2d(2)
        self.linear1 = Linear(320, 128)
        self.linear2 = Linear(128, 64)
        self.linear3 = Linear(64, 10)
        self.relu = ReLU()

    def forward(self, x):
        x = self.relu(self.maxpool1(self.conv1(x)))
        x = self.relu(self.maxpool2(self.conv2(x)))
        x = x.view(x.size(0), -1)
        x = self.linear1(x)
        x = self.linear2(x)
        x = self.linear3(x)

        return x

# 损失函数CrossentropyLoss
model = MnistModel()#实例化
criterion = nn.CrossEntropyLoss()   # 交叉熵损失,相当于Softmax+Log+NllLoss
# 线性多分类模型Softmax,给出最终预测值对于10个类别出现的概率,Log:将乘法转换为加法,减少计算量,保证函数的单调性
# NLLLoss:计算损失,此过程不需要手动one-hot编码,NLLLoss会自动完成

# SGD,优化器,梯度下降算法e
optimizer = torch.optim.SGD(model.parameters(), lr=0.14)#lr:学习率

4)模型训练
每次训练完成后会自动保存参数到pkl模型中,如果路径中有Pkl文件,下次运行会自动加载上一次的模型参数,在这个基础上继续训练,第一次运行时没有模型参数,结束后会自动生成。

# 模型训练
def train():
    # index = 0
    for index, data in enumerate(train_loader):#获取训练数据以及对应标签
        # for data in train_loader:
       input, target = data   # input为输入数据,target为标签
       y_predict = model(input) #模型预测
       loss = criterion(y_predict, target)
       optimizer.zero_grad() #梯度清零
       loss.backward()#loss值反向传播
       optimizer.step()#更新参数
       # index += 1
       if index % 100 == 0: # 每一百次保存一次模型,打印损失
           torch.save(model.state_dict(), "./model/model.pkl")   # 保存模型
           torch.save(optimizer.state_dict(), "./model/optimizer.pkl")
           print("训练次数为:{},损失值为:{}".format(index, loss.item() ))


5)加载模型
第一次运行这里需要一个空的model文件夹

# 加载模型
if os.path.exists('./model/model.pkl'):
   model.load_state_dict(torch.load("./model/model.pkl"))#加载保存模型的参数

6)模型测试

# 模型测试
def test():
    correct = 0     # 正确预测的个数
    total = 0   # 总数
    with torch.no_grad():   # 测试不用计算梯度
        for data in test_loader:
            input, target = data
            output = model(input)   # output输出10个预测取值,概率最大的为预测数
            probability, predict = torch.max(input=output.data, dim=1)    # 返回一个元祖,第一个为最大概率值,第二个为最大概率值的下标
            # loss = criterion(output, target)
            total += target.size(0)  # target是形状为(batch_size,1)的矩阵,使用size(0)取出该批的大小
            correct += (predict == target).sum().item()  # predict 和target均为(batch_size,1)的矩阵,sum求出相等的个数
        print("测试准确率为:%.6f" %(correct / total))

6)自己手写数字图片识别函数(可选用)
这部分主要是加载训练好的pkl模型测试自己的数据,因此在进行自己手写图的测试时,需要有训练好的pkl文件,并且就不要调用train()函数和test()函数啦注意:这个图片像素也要说黑底白字,28*28像素,否则无法识别

def test_mydata():
    image = Image.open('./test/test_two.png')   #读取自定义手写图片
    image = image.resize((28, 28))   # 裁剪尺寸为28*28
    image = image.convert('L')  # 转换为灰度图像
    transform = transforms.ToTensor()
    image = transform(image)
    image = image.resize(1, 1, 28, 28)
    output = model(image)
    probability, predict = torch.max(output.data, dim=1)
    print("此手写图片值为:%d,其最大概率为:%.2f " % (predict[0], probability))
    plt.title("此手写图片值为:{}".format((int(predict))), fontname='SimHei')
    plt.imshow(image.squeeze())
    plt.show()

7)MNIST中的数据识别测试数据
训练过程中的打印信息我进行了修改,这里设置的训练轮数是15轮,每次训练生成的pkl模型参数也是会更新的,想要更多训练信息可以查看对应的教程哦~

#测试识别函数
if __name__ == '__main__':
    #训练与测试
    for i in range(15):#训练和测试进行15轮
        print({
    "————————第{}轮测试开始——————".format (i + 1)})
        train()
        test(

8)测试自己的手写数字图片(可选)
这部分主要是与tset_mydata()函数结合,加载训练好的pkl模型测试自己的数据,因此在进行自己手写图的测试时,需要有训练好的pkl文件,并且就不要调用train()函数和test()函数啦。注意:这个图片像素也要说黑底白字,28*28像素,否则无法识别

# 测试主函数
if __name__ == '__main__':
    test_mydata()

将所有代码按顺序放到编辑器中,安装好对应的包,就可以顺利运行啦。

  • 如果成功运行了请给我一个免费的赞吧,这对我真的很重要!!!
  • 如果不成功请留下你的问题,我会尽量帮忙的!

完整代码放下面:

import os
import matplotlib.pyplot as plt
import torch
from PIL import Image
from torch import nn
from torch.nn import Conv2d, Linear, ReLU
from torch.nn import MaxPool2d
from torchvision import transforms
from torchvision.datasets import MNIST
from torch.utils.data import DataLoader


# Dataset:创建数据集的函数;__init__:初始化数据内容和标签
# __geyitem:获取数据内容和标签
# __len__:获取数据集大小
# daataloader:数据加载类,接受来自dataset已经加载好的数据集
# torchbision:图形库,包含预训练模型,加载数据的函数、图片变换,裁剪、旋转等
# torchtext:处理文本的工具包,将不同类型的额文件转换为datasets

# 预处理:将两个步骤整合在一起
transform = transforms.Compose({
    
    transforms.ToTensor(),  # 将灰度图片像素值(0~255)转为Tensor(0~1),方便后续处理
    # transforms.Normalize((0.1307,),(0.3081)),    # 归一化,均值0,方差1;mean:各通道的均值std:各通道的标准差inplace:是否原地操作
})

# normalize执行以下操作:image=(image-mean)/std?????
# input[channel] = (input[channel] - mean[channel]) / std[channel]

# 加载数据集
# 训练数据集
train_data = MNIST(root='./data', train=True, transform=transform, download=True)
train_loader = DataLoader(dataset=train_data, batch_size=64, shuffle=True)
# transform:指示加载的数据集应用的数据预处理的规则,shuffle:洗牌,是否打乱输入数据顺序
# 测试数据集
test_data = MNIST(root="./data", train=False, transform=transform, download=True)
test_loader = DataLoader(dataset=test_data, batch_size=64, shuffle=True)

train_data_size = len(train_data)
test_data_size = len(test_data)
print("训练数据集的长度:{}".format(train_data_size))
print("测试数据集的长度:{}".format(test_data_size))
# print(test_data)
# print(train_data)


class MnistModel(nn.Module):
    def __init__(self):
        super(MnistModel, self).__init__()
        self.conv1 = Conv2d(in_channels=1, out_channels=10, kernel_size=5, stride=1, padding=0)
        self.maxpool1 = MaxPool2d(2)
        self.conv2 = Conv2d(in_channels=10, out_channels=20, kernel_size=5, stride=1, padding=0)
        self.maxpool2 = MaxPool2d(2)
        self.linear1 = Linear(320, 128)
        self.linear2 = Linear(128, 64)
        self.linear3 = Linear(64, 10)
        self.relu = ReLU()

    def forward(self, x):
        x = self.relu(self.maxpool1(self.conv1(x)))
        x = self.relu(self.maxpool2(self.conv2(x)))
        x = x.view(x.size(0), -1)
        x = self.linear1(x)
        x = self.linear2(x)
        x = self.linear3(x)

        return x


# 损失函数CrossentropyLoss
model = MnistModel()#实例化
criterion = nn.CrossEntropyLoss()   # 交叉熵损失,相当于Softmax+Log+NllLoss
# 线性多分类模型Softmax,给出最终预测值对于10个类别出现的概率,Log:将乘法转换为加法,减少计算量,保证函数的单调性
# NLLLoss:计算损失,此过程不需要手动one-hot编码,NLLLoss会自动完成

# SGD,优化器,梯度下降算法e
optimizer = torch.optim.SGD(model.parameters(), lr=0.14)#lr:学习率


# 模型训练
def train():
    # index = 0
    for index, data in enumerate(train_loader):#获取训练数据以及对应标签
        # for data in train_loader:
       input, target = data   # input为输入数据,target为标签
       y_predict = model(input) #模型预测
       loss = criterion(y_predict, target)
       optimizer.zero_grad() #梯度清零
       loss.backward()#loss值反向传播
       optimizer.step()#更新参数
       # index += 1
       if index % 100 == 0: # 每一百次保存一次模型,打印损失
           torch.save(model.state_dict(), "./model/model.pkl")   # 保存模型
           torch.save(optimizer.state_dict(), "./model/optimizer.pkl")
           print("训练次数为:{},损失值为:{}".format(index, loss.item() ))

# 加载模型
if os.path.exists('./model/model.pkl'):
   model.load_state_dict(torch.load("./model/model.pkl"))#加载保存模型的参数


# 模型测试
def test():
    correct = 0     # 正确预测的个数
    total = 0   # 总数
    with torch.no_grad():   # 测试不用计算梯度
        for data in test_loader:
            input, target = data
            output = model(input)   # output输出10个预测取值,概率最大的为预测数
            probability, predict = torch.max(input=output.data, dim=1)    # 返回一个元祖,第一个为最大概率值,第二个为最大概率值的下标
            # loss = criterion(output, target)
            total += target.size(0)  # target是形状为(batch_size,1)的矩阵,使用size(0)取出该批的大小
            correct += (predict == target).sum().item()  # predict 和target均为(batch_size,1)的矩阵,sum求出相等的个数
        print("测试准确率为:%.6f" %(correct / total))


#测试识别函数
if __name__ == '__main__':
    #训练与测试
    for i in range(15):#训练和测试进行5轮
        print({
    "————————第{}轮测试开始——————".format (i + 1)})
        train()
        test()


def test_mydata():
    image = Image.open('./test/test_two.png')   #读取自定义手写图片
    image = image.resize((28, 28))   # 裁剪尺寸为28*28
    image = image.convert('L')  # 转换为灰度图像
    transform = transforms.ToTensor()
    image = transform(image)
    image = image.resize(1, 1, 28, 28)
    output = model(image)
    probability, predict = torch.max(output.data, dim=1)
    print("此手写图片值为:%d,其最大概率为:%.2f " % (predict[0], probability))
    plt.title("此手写图片值为:{}".format((int(predict))), fontname='SimHei')
    plt.imshow(image.squeeze())
    plt.show()

# 测试主函数
# if __name__ == '__main__':
#     test_mydata()
版权声明:本文为博主原创文章,遵循 CC 4.0 BY-SA 版权协议,转载请附上原文出处链接和本声明。
本文链接:https://blog.csdn.net/Ps_hello/article/details/134169021

智能推荐

艾美捷Epigentek DNA样品的超声能量处理方案-程序员宅基地

文章浏览阅读15次。空化气泡的大小和相应的空化能量可以通过调整完全标度的振幅水平来操纵和数字控制。通过强调超声技术中的更高通量处理和防止样品污染,Epigentek EpiSonic超声仪可以轻松集成到现有的实验室工作流程中,并且特别适合与表观遗传学和下一代应用的兼容性。Epigentek的EpiSonic已成为一种有效的剪切设备,用于在染色质免疫沉淀技术中制备染色质样品,以及用于下一代测序平台的DNA文库制备。该装置的经济性及其多重样品的能力使其成为每个实验室拥有的经济高效的工具,而不仅仅是核心设施。

11、合宙Air模块Luat开发:通过http协议获取天气信息_合宙获取天气-程序员宅基地

文章浏览阅读4.2k次,点赞3次,收藏14次。目录点击这里查看所有博文  本系列博客,理论上适用于合宙的Air202、Air268、Air720x、Air720S以及最近发布的Air720U(我还没拿到样机,应该也能支持)。  先不管支不支持,如果你用的是合宙的模块,那都不妨一试,也许会有意外收获。  我使用的是Air720SL模块,如果在其他模块上不能用,那就是底层core固件暂时还没有支持,这里的代码是没有问题的。例程仅供参考!..._合宙获取天气

EasyMesh和802.11s对比-程序员宅基地

文章浏览阅读7.7k次,点赞2次,收藏41次。1 关于meshMesh的意思是网状物,以前读书的时候,在自动化领域有传感器自组网,zigbee、蓝牙等无线方式实现各个网络节点消息通信,通过各种算法,保证整个网络中所有节点信息能经过多跳最终传递到目的地,用于数据采集。十多年过去了,在无线路由器领域又把这个mesh概念翻炒了一下,各大品牌都推出了mesh路由器,大多数是3个为一组,实现在面积较大的住宅里,增强wifi覆盖范围,智能在多热点之间切换,提升上网体验。因为节点基本上在3个以内,所以mesh的算法不必太复杂,组网形式比较简单。各厂家都自定义了组_802.11s

线程的几种状态_线程状态-程序员宅基地

文章浏览阅读5.2k次,点赞8次,收藏21次。线程的几种状态_线程状态

stack的常见用法详解_stack函数用法-程序员宅基地

文章浏览阅读4.2w次,点赞124次,收藏688次。stack翻译为栈,是STL中实现的一个后进先出的容器。要使用 stack,应先添加头文件include<stack>,并在头文件下面加上“ using namespacestd;"1. stack的定义其定义的写法和其他STL容器相同, typename可以任意基本数据类型或容器:stack<typename> name;2. stack容器内元素的访问..._stack函数用法

2018.11.16javascript课上随笔(DOM)-程序员宅基地

文章浏览阅读71次。<li> <a href = "“#”>-</a></li><li>子节点:文本节点(回车),元素节点,文本节点。不同节点树:  节点(各种类型节点)childNodes:返回子节点的所有子节点的集合,包含任何类型、元素节点(元素类型节点):child。node.getAttribute(at...

随便推点

layui.extend的一点知识 第三方模块base 路径_layui extend-程序员宅基地

文章浏览阅读3.4k次。//config的设置是全局的layui.config({ base: '/res/js/' //假设这是你存放拓展模块的根目录}).extend({ //设定模块别名 mymod: 'mymod' //如果 mymod.js 是在根目录,也可以不用设定别名 ,mod1: 'admin/mod1' //相对于上述 base 目录的子目录}); //你也可以忽略 base 设定的根目录,直接在 extend 指定路径(主要:该功能为 layui 2.2.0 新增)layui.exten_layui extend

5G云计算:5G网络的分层思想_5g分层结构-程序员宅基地

文章浏览阅读3.2k次,点赞6次,收藏13次。分层思想分层思想分层思想-1分层思想-2分层思想-2OSI七层参考模型物理层和数据链路层物理层数据链路层网络层传输层会话层表示层应用层OSI七层模型的分层结构TCP/IP协议族的组成数据封装过程数据解封装过程PDU设备与层的对应关系各层通信分层思想分层思想-1在现实生活种,我们在喝牛奶时,未必了解他的生产过程,我们所接触的或许只是从超时购买牛奶。分层思想-2平时我们在网络时也未必知道数据的传输过程我们的所考虑的就是可以传就可以,不用管他时怎么传输的分层思想-2将复杂的流程分解为几个功能_5g分层结构

基于二值化图像转GCode的单向扫描实现-程序员宅基地

文章浏览阅读191次。在激光雕刻中,单向扫描(Unidirectional Scanning)是一种雕刻技术,其中激光头只在一个方向上移动,而不是来回移动。这种移动方式主要应用于通过激光逐行扫描图像表面的过程。具体而言,单向扫描的过程通常包括以下步骤:横向移动(X轴): 激光头沿X轴方向移动到图像的一侧。纵向移动(Y轴): 激光头沿Y轴方向开始逐行移动,刻蚀图像表面。这一过程是单向的,即在每一行上激光头只在一个方向上移动。返回横向移动: 一旦一行完成,激光头返回到图像的一侧,准备进行下一行的刻蚀。

算法随笔:强连通分量-程序员宅基地

文章浏览阅读577次。强连通:在有向图G中,如果两个点u和v是互相可达的,即从u出发可以到达v,从v出发也可以到达u,则成u和v是强连通的。强连通分量:如果一个有向图G不是强连通图,那么可以把它分成躲个子图,其中每个子图的内部是强连通的,而且这些子图已经扩展到最大,不能与子图外的任一点强连通,成这样的一个“极大连通”子图是G的一个强连通分量(SCC)。强连通分量的一些性质:(1)一个点必须有出度和入度,才会与其他点强连通。(2)把一个SCC从图中挖掉,不影响其他点的强连通性。_强连通分量

Django(2)|templates模板+静态资源目录static_django templates-程序员宅基地

文章浏览阅读3.9k次,点赞5次,收藏18次。在做web开发,要给用户提供一个页面,页面包括静态页面+数据,两者结合起来就是完整的可视化的页面,django的模板系统支持这种功能,首先需要写一个静态页面,然后通过python的模板语法将数据渲染上去。1.创建一个templates目录2.配置。_django templates

linux下的GPU测试软件,Ubuntu等Linux系统显卡性能测试软件 Unigine 3D-程序员宅基地

文章浏览阅读1.7k次。Ubuntu等Linux系统显卡性能测试软件 Unigine 3DUbuntu Intel显卡驱动安装,请参考:ATI和NVIDIA显卡请在软件和更新中的附加驱动中安装。 这里推荐: 运行后,F9就可评分,已测试显卡有K2000 2GB 900+分,GT330m 1GB 340+ 分,GT620 1GB 340+ 分,四代i5核显340+ 分,还有写博客的小盒子100+ 分。relaybot@re...

推荐文章

热门文章

相关标签