【搞定Go语言】第2天20:Go语言基础之网络编程_golang recv eof-程序员宅基地

技术标签: Go语言  

现在我们几乎每天都在使用互联网,我们前面已经学习了如何编写Go语言程序,但是如何才能让我们的程序通过网络互相通信呢?本章我们就一起来学习下Go语言中的网络编程。 关于网络编程其实是一个很庞大的领域,本文只是简单的演示了如何使用net包进行TCP和UDP通信。如需了解更详细的网络编程请自行检索和阅读专业资料。

互联网协议介绍

互联网的核心是一系列协议,总称为”互联网协议”(Internet Protocol Suite),正是这一些协议规定了电脑如何连接和组网。我们理解了这些协议,就理解了互联网的原理。由于这些协议太过庞大和复杂,没有办法在这里一概而全,只能介绍一下我们日常开发中接触较多的几个协议。

互联网分层模型

互联网的逻辑实现被分为好几层。每一层都有自己的功能,就像建筑物一样,每一层都靠下一层支持。用户接触到的只是最上面的那一层,根本不会感觉到下面的几层。要理解互联网就需要自下而上理解每一层的实现的功能。

osi七层模型 在这里插入图片描述

如上图所示,互联网按照不同的模型划分会有不用的分层,但是不论按照什么模型去划分,越往上的层越靠近用户,越往下的层越靠近硬件。在软件开发中我们使用最多的是上图中将互联网划分为五个分层的模型。

接下来我们一层一层的自底向上介绍一下每一层。

物理层

我们的电脑要与外界互联网通信,需要先把电脑连接网络,我们可以用双绞线、光纤、无线电波等方式。这就叫做”实物理层”,它就是把电脑连接起来的物理手段。它主要规定了网络的一些电气特性,作用是负责传送0和1的电信号。

数据链路层

单纯的0和1没有任何意义,所以我们使用者会为其赋予一些特定的含义,规定解读电信号的方式:例如:多少个电信号算一组?每个信号位有何意义?这就是”数据链接层”的功能,它在”物理层”的上方,确定了物理层传输的0和1的分组方式及代表的意义。早期的时候,每家公司都有自己的电信号分组方式。逐渐地,一种叫做”以太网”(Ethernet)的协议,占据了主导地位。

以太网规定,一组电信号构成一个数据包,叫做”帧”(Frame)。每一帧分成两个部分:标头(Head)和数据(Data)。其中”标头”包含数据包的一些说明项,比如发送者、接受者、数据类型等等;”数据”则是数据包的具体内容。”标头”的长度,固定为18字节。”数据”的长度,最短为46字节,最长为1500字节。因此,整个”帧”最短为64字节,最长为1518字节。如果数据很长,就必须分割成多个帧进行发送。

那么,发送者和接受者是如何标识呢?以太网规定,连入网络的所有设备都必须具有”网卡”接口。数据包必须是从一块网卡,传送到另一块网卡。网卡的地址,就是数据包的发送地址和接收地址,这叫做MAC地址。每块网卡出厂的时候,都有一个全世界独一无二的MAC地址,长度是48个二进制位,通常用12个十六进制数表示。前6个十六进制数是厂商编号,后6个是该厂商的网卡流水号。有了MAC地址,就可以定位网卡和数据包的路径了。

我们会通过ARP协议来获取接受方的MAC地址,有了MAC地址之后,如何把数据准确的发送给接收方呢?其实这里以太网采用了一种很”原始”的方式,它不是把数据包准确送到接收方,而是向本网络内所有计算机都发送,让每台计算机读取这个包的”标头”,找到接收方的MAC地址,然后与自身的MAC地址相比较,如果两者相同,就接受这个包,做进一步处理,否则就丢弃这个包。这种发送方式就叫做”广播”(broadcasting)。

网络层

按照以太网协议的规则我们可以依靠MAC地址来向外发送数据。理论上依靠MAC地址,你电脑的网卡就可以找到身在世界另一个角落的某台电脑的网卡了,但是这种做法有一个重大缺陷就是以太网采用广播方式发送数据包,所有成员人手一”包”,不仅效率低,而且发送的数据只能局限在发送者所在的子网络。也就是说如果两台计算机不在同一个子网络,广播是传不过去的。这种设计是合理且必要的,因为如果互联网上每一台计算机都会收到互联网上收发的所有数据包,那是不现实的。

因此,必须找到一种方法区分哪些MAC地址属于同一个子网络,哪些不是。如果是同一个子网络,就采用广播方式发送,否则就采用”路由”方式发送。这就导致了”网络层”的诞生。它的作用是引进一套新的地址,使得我们能够区分不同的计算机是否属于同一个子网络。这套地址就叫做”网络地址”,简称”网址”。

“网络层”出现以后,每台计算机有了两种地址,一种是MAC地址,另一种是网络地址。两种地址之间没有任何联系,MAC地址是绑定在网卡上的,网络地址则是网络管理员分配的。网络地址帮助我们确定计算机所在的子网络,MAC地址则将数据包送到该子网络中的目标网卡。因此,从逻辑上可以推断,必定是先处理网络地址,然后再处理MAC地址。

规定网络地址的协议,叫做IP协议。它所定义的地址,就被称为IP地址。目前,广泛采用的是IP协议第四版,简称IPv4。IPv4这个版本规定,网络地址由32个二进制位组成,我们通常习惯用分成四段的十进制数表示IP地址,从0.0.0.0一直到255.255.255.255。

根据IP协议发送的数据,就叫做IP数据包。IP数据包也分为”标头”和”数据”两个部分:”标头”部分主要包括版本、长度、IP地址等信息,”数据”部分则是IP数据包的具体内容。IP数据包的”标头”部分的长度为20到60字节,整个数据包的总长度最大为65535字节。

传输层

有了MAC地址和IP地址,我们已经可以在互联网上任意两台主机上建立通信。但问题是同一台主机上会有许多程序都需要用网络收发数据,比如QQ和浏览器这两个程序都需要连接互联网并收发数据,我们如何区分某个数据包到底是归哪个程序的呢?也就是说,我们还需要一个参数,表示这个数据包到底供哪个程序(进程)使用。这个参数就叫做”端口”(port),它其实是每一个使用网卡的程序的编号。每个数据包都发到主机的特定端口,所以不同的程序就能取到自己所需要的数据。

“端口”是0到65535之间的一个整数,正好16个二进制位。0到1023的端口被系统占用,用户只能选用大于1023的端口。有了IP和端口我们就能实现唯一确定互联网上一个程序,进而实现网络间的程序通信。

我们必须在数据包中加入端口信息,这就需要新的协议。最简单的实现叫做UDP协议,它的格式几乎就是在数据前面,加上端口号。UDP数据包,也是由”标头”和”数据”两部分组成:”标头”部分主要定义了发出端口和接收端口,”数据”部分就是具体的内容。UDP数据包非常简单,”标头”部分一共只有8个字节,总长度不超过65,535字节,正好放进一个IP数据包。

UDP协议的优点是比较简单,容易实现,但是缺点是可靠性较差,一旦数据包发出,无法知道对方是否收到。为了解决这个问题,提高网络可靠性,TCP协议就诞生了。TCP协议能够确保数据不会遗失。它的缺点是过程复杂、实现困难、消耗较多的资源。TCP数据包没有长度限制,理论上可以无限长,但是为了保证网络的效率,通常TCP数据包的长度不会超过IP数据包的长度,以确保单个TCP数据包不必再分割。

应用层

应用程序收到”传输层”的数据,接下来就要对数据进行解包。由于互联网是开放架构,数据来源五花八门,必须事先规定好通信的数据格式,否则接收方根本无法获得真正发送的数据内容。”应用层”的作用就是规定应用程序使用的数据格式,例如我们TCP协议之上常见的Email、HTTP、FTP等协议,这些协议就组成了互联网协议的应用层。

如下图所示,发送方的HTTP数据经过互联网的传输过程中会依次添加各层协议的标头信息,接收方收到数据包之后再依次根据协议解包得到数据。

HTTP数据传输图解

在这里插入图片描述

socket编程

Socket是BSD UNIX的进程通信机制,通常也称作”套接字”,用于描述IP地址和端口,是一个通信链的句柄。Socket可以理解为TCP/IP网络的API,它定义了许多函数或例程,程序员可以用它们来开发TCP/IP网络上的应用程序。电脑上运行的应用程序通常通过”套接字”向网络发出请求或者应答网络请求。

socket图解

Socket是应用层与TCP/IP协议族通信的中间软件抽象层。在设计模式中,Socket其实就是一个门面模式,它把复杂的TCP/IP协议族隐藏在Socket后面,对用户来说只需要调用Socket规定的相关函数,让Socket去组织符合指定的协议数据然后进行通信。

socket图解

在这里插入图片描述

Go语言实现TCP通信

TCP协议

TCP/IP(Transmission Control Protocol/Internet Protocol) 即传输控制协议/网间协议,是一种面向连接(连接导向)的、可靠的、基于字节流的传输层(Transport layer)通信协议,因为是面向连接的协议,数据像水流一样传输,会存在黏包问题。

TCP服务端

一个TCP服务端可以同时连接很多个客户端,例如世界各地的用户使用自己电脑上的浏览器访问淘宝网。因为Go语言中创建多个goroutine实现并发非常方便和高效,所以我们可以每建立一次链接就创建一个goroutine去处理。

TCP服务端程序的处理流程:

监听端口
接收客户端请求建立链接
创建goroutine处理链接。

我们使用Go语言的net包实现的TCP服务端代码如下:

// tcp/server/main.go

// TCP server端

// 处理函数
func process(conn net.Conn) {
    
	defer conn.Close() // 关闭连接
	for {
    
		reader := bufio.NewReader(conn)
		var buf [128]byte
		n, err := reader.Read(buf[:]) // 读取数据
		if err != nil {
    
			fmt.Println("read from client failed, err:", err)
			break
		}
		recvStr := string(buf[:n])
		fmt.Println("收到client端发来的数据:", recvStr)
		conn.Write([]byte(recvStr)) // 发送数据
	}
}

func main() {
    
	listen, err := net.Listen("tcp", "127.0.0.1:20000")
	if err != nil {
    
		fmt.Println("listen failed, err:", err)
		return
	}
	for {
    
		conn, err := listen.Accept() // 建立连接
		if err != nil {
    
			fmt.Println("accept failed, err:", err)
			continue
		}
		go process(conn) // 启动一个goroutine处理连接
	}
}

将上面的代码保存之后编译成server或server.exe可执行文件。

TCP客户端

一个TCP客户端进行TCP通信的流程如下:

建立与服务端的链接
进行数据收发
关闭链接

使用Go语言的net包实现的TCP客户端代码如下:

// tcp/client/main.go

// 客户端
func main() {
    
	conn, err := net.Dial("tcp", "127.0.0.1:20000")
	if err != nil {
    
		fmt.Println("err :", err)
		return
	}
	defer conn.Close() // 关闭连接
	inputReader := bufio.NewReader(os.Stdin)
	for {
    
		input, _ := inputReader.ReadString('\n') // 读取用户输入
		inputInfo := strings.Trim(input, "\r\n")
		if strings.ToUpper(inputInfo) == "Q" {
     // 如果输入q就退出
			return
		}
		_, err = conn.Write([]byte(inputInfo)) // 发送数据
		if err != nil {
    
			return
		}
		buf := [512]byte{
    }
		n, err := conn.Read(buf[:])
		if err != nil {
    
			fmt.Println("recv failed, err:", err)
			return
		}
		fmt.Println(string(buf[:n]))
	}
}

将上面的代码编译成client或client.exe可执行文件,先启动server端再启动client端,在client端输入任意内容回车之后就能够在server端看到client端发送的数据,从而实现TCP通信。

TCP黏包

黏包示例
服务端代码如下:

// socket_stick/server/main.go

func process(conn net.Conn) {
    
	defer conn.Close()
	reader := bufio.NewReader(conn)
	var buf [1024]byte
	for {
    
		n, err := reader.Read(buf[:])
		if err == io.EOF {
    
			break
		}
		if err != nil {
    
			fmt.Println("read from client failed, err:", err)
			break
		}
		recvStr := string(buf[:n])
		fmt.Println("收到client发来的数据:", recvStr)
	}
}

func main() {
    

	listen, err := net.Listen("tcp", "127.0.0.1:30000")
	if err != nil {
    
		fmt.Println("listen failed, err:", err)
		return
	}
	defer listen.Close()
	for {
    
		conn, err := listen.Accept()
		if err != nil {
    
			fmt.Println("accept failed, err:", err)
			continue
		}
		go process(conn)
	}
}

客户端代码如下:

// socket_stick/client/main.go

func main() {
    
	conn, err := net.Dial("tcp", "127.0.0.1:30000")
	if err != nil {
    
		fmt.Println("dial failed, err", err)
		return
	}
	defer conn.Close()
	for i := 0; i < 20; i++ {
    
		msg := `Hello, Hello. How are you?`
		conn.Write([]byte(msg))
	}
}

将上面的代码保存后,分别编译。先启动服务端再启动客户端,可以看到服务端输出结果如下:

收到client发来的数据: Hello, Hello. How are you?Hello, Hello. How are you?Hello, Hello. How are you?Hello, Hello. How are you?Hello, Hello. How are you?
收到client发来的数据: Hello, Hello. How are you?Hello, Hello. How are you?Hello, Hello. How are you?Hello, Hello. How are you?Hello, Hello. How are you?Hello, Hello. How are you?Hello, Hello. How are you?Hello, Hello. How are you?
收到client发来的数据: Hello, Hello. How are you?Hello, Hello. How are you?
收到client发来的数据: Hello, Hello. How are you?Hello, Hello. How are you?Hello, Hello. How are you?
收到client发来的数据: Hello, Hello. How are you?Hello, Hello. How are you?
客户端分10次发送的数据,在服务端并没有成功的输出10次,而是多条数据“粘”到了一起。

为什么会出现粘包

主要原因就是tcp数据传递模式是流模式,在保持长连接的时候可以进行多次的收和发。

“粘包”可发生在发送端也可发生在接收端:

由Nagle算法造成的发送端的粘包:Nagle算法是一种改善网络传输效率的算法。简单来说就是当我们提交一段数据给TCP发送时,TCP并不立刻发送此段数据,而是等待一小段时间看看在等待期间是否还有要发送的数据,若有则会一次把这两段数据发送出去。
接收端接收不及时造成的接收端粘包:TCP会把接收到的数据存在自己的缓冲区中,然后通知应用层取数据。当应用层由于某些原因不能及时的把TCP的数据取出来,就会造成TCP缓冲区中存放了几段数据。
解决办法
出现”粘包”的关键在于接收方不确定将要传输的数据包的大小,因此我们可以对数据包进行封包和拆包的操作。

封包:封包就是给一段数据加上包头,这样一来数据包就分为包头和包体两部分内容了(过滤非法包时封包会加入”包尾”内容)。包头部分的长度是固定的,并且它存储了包体的长度,根据包头长度固定以及包头中含有包体长度的变量就能正确的拆分出一个完整的数据包。

我们可以自己定义一个协议,比如数据包的前4个字节为包头,里面存储的是发送的数据的长度。

// socket_stick/proto/proto.go
package proto

import (
	"bufio"
	"bytes"
	"encoding/binary"
)

// Encode 将消息编码
func Encode(message string) ([]byte, error) {
    
	// 读取消息的长度,转换成int32类型(占4个字节)
	var length = int32(len(message))
	var pkg = new(bytes.Buffer)
	// 写入消息头
	err := binary.Write(pkg, binary.LittleEndian, length)
	if err != nil {
    
		return nil, err
	}
	// 写入消息实体
	err = binary.Write(pkg, binary.LittleEndian, []byte(message))
	if err != nil {
    
		return nil, err
	}
	return pkg.Bytes(), nil
}

// Decode 解码消息
func Decode(reader *bufio.Reader) (string, error) {
    
	// 读取消息的长度
	lengthByte, _ := reader.Peek(4) // 读取前4个字节的数据
	lengthBuff := bytes.NewBuffer(lengthByte)
	var length int32
	err := binary.Read(lengthBuff, binary.LittleEndian, &length)
	if err != nil {
    
		return "", err
	}
	// Buffered返回缓冲中现有的可读取的字节数。
	if int32(reader.Buffered()) < length+4 {
    
		return "", err
	}

	// 读取真正的消息数据
	pack := make([]byte, int(4+length))
	_, err = reader.Read(pack)
	if err != nil {
    
		return "", err
	}
	return string(pack[4:]), nil
}

接下来在服务端和客户端分别使用上面定义的proto包的Decode和Encode函数处理数据。

服务端代码如下:

// socket_stick/server2/main.go

func process(conn net.Conn) {
    
	defer conn.Close()
	reader := bufio.NewReader(conn)
	for {
    
		msg, err := proto.Decode(reader)
		if err == io.EOF {
    
			return
		}
		if err != nil {
    
			fmt.Println("decode msg failed, err:", err)
			return
		}
		fmt.Println("收到client发来的数据:", msg)
	}
}

func main() {
    

	listen, err := net.Listen("tcp", "127.0.0.1:30000")
	if err != nil {
    
		fmt.Println("listen failed, err:", err)
		return
	}
	defer listen.Close()
	for {
    
		conn, err := listen.Accept()
		if err != nil {
    
			fmt.Println("accept failed, err:", err)
			continue
		}
		go process(conn)
	}
}

客户端代码如下:

// socket_stick/client2/main.go

func main() {
    
	conn, err := net.Dial("tcp", "127.0.0.1:30000")
	if err != nil {
    
		fmt.Println("dial failed, err", err)
		return
	}
	defer conn.Close()
	for i := 0; i < 20; i++ {
    
		msg := `Hello, Hello. How are you?`
		data, err := proto.Encode(msg)
		if err != nil {
    
			fmt.Println("encode msg failed, err:", err)
			return
		}
		conn.Write(data)
	}
}

Go语言实现UDP通信

UDP协议

UDP协议(User Datagram Protocol)中文名称是用户数据报协议,是OSI(Open System Interconnection,开放式系统互联)参考模型中一种无连接的传输层协议,不需要建立连接就能直接进行数据发送和接收,属于不可靠的、没有时序的通信,但是UDP协议的实时性比较好,通常用于视频直播相关领域。

UDP服务端

使用Go语言的net包实现的UDP服务端代码如下:

// UDP/server/main.go

// UDP server端
func main() {
    
	listen, err := net.ListenUDP("udp", &net.UDPAddr{
    
		IP:   net.IPv4(0, 0, 0, 0),
		Port: 30000,
	})
	if err != nil {
    
		fmt.Println("listen failed, err:", err)
		return
	}
	defer listen.Close()
	for {
    
		var data [1024]byte
		n, addr, err := listen.ReadFromUDP(data[:]) // 接收数据
		if err != nil {
    
			fmt.Println("read udp failed, err:", err)
			continue
		}
		fmt.Printf("data:%v addr:%v count:%v\n", string(data[:n]), addr, n)
		_, err = listen.WriteToUDP(data[:n], addr) // 发送数据
		if err != nil {
    
			fmt.Println("write to udp failed, err:", err)
			continue
		}
	}
}

UDP客户端

使用Go语言的net包实现的UDP客户端代码如下:

// UDP 客户端
func main() {
    
	socket, err := net.DialUDP("udp", nil, &net.UDPAddr{
    
		IP:   net.IPv4(0, 0, 0, 0),
		Port: 30000,
	})
	if err != nil {
    
		fmt.Println("连接服务端失败,err:", err)
		return
	}
	defer socket.Close()
	sendData := []byte("Hello server")
	_, err = socket.Write(sendData) // 发送数据
	if err != nil {
    
		fmt.Println("发送数据失败,err:", err)
		return
	}
	data := make([]byte, 4096)
	n, remoteAddr, err := socket.ReadFromUDP(data) // 接收数据
	if err != nil {
    
		fmt.Println("接收数据失败,err:", err)
		return
	}
	fmt.Printf("recv:%v addr:%v count:%v\n", string(data[:n]), remoteAddr, n)
}
版权声明:本文为博主原创文章,遵循 CC 4.0 BY-SA 版权协议,转载请附上原文出处链接和本声明。
本文链接:https://blog.csdn.net/qq_33591055/article/details/110498827

智能推荐

什么是内部类?成员内部类、静态内部类、局部内部类和匿名内部类的区别及作用?_成员内部类和局部内部类的区别-程序员宅基地

文章浏览阅读3.4k次,点赞8次,收藏42次。一、什么是内部类?or 内部类的概念内部类是定义在另一个类中的类;下面类TestB是类TestA的内部类。即内部类对象引用了实例化该内部对象的外围类对象。public class TestA{ class TestB {}}二、 为什么需要内部类?or 内部类有什么作用?1、 内部类方法可以访问该类定义所在的作用域中的数据,包括私有数据。2、内部类可以对同一个包中的其他类隐藏起来。3、 当想要定义一个回调函数且不想编写大量代码时,使用匿名内部类比较便捷。三、 内部类的分类成员内部_成员内部类和局部内部类的区别

分布式系统_分布式系统运维工具-程序员宅基地

文章浏览阅读118次。分布式系统要求拆分分布式思想的实质搭配要求分布式系统要求按照某些特定的规则将项目进行拆分。如果将一个项目的所有模板功能都写到一起,当某个模块出现问题时将直接导致整个服务器出现问题。拆分按照业务拆分为不同的服务器,有效的降低系统架构的耦合性在业务拆分的基础上可按照代码层级进行拆分(view、controller、service、pojo)分布式思想的实质分布式思想的实质是为了系统的..._分布式系统运维工具

用Exce分析l数据极简入门_exce l趋势分析数据量-程序员宅基地

文章浏览阅读174次。1.数据源准备2.数据处理step1:数据表处理应用函数:①VLOOKUP函数; ② CONCATENATE函数终表:step2:数据透视表统计分析(1) 透视表汇总不同渠道用户数, 金额(2)透视表汇总不同日期购买用户数,金额(3)透视表汇总不同用户购买订单数,金额step3:讲第二步结果可视化, 比如, 柱形图(1)不同渠道用户数, 金额(2)不同日期..._exce l趋势分析数据量

宁盾堡垒机双因素认证方案_horizon宁盾双因素配置-程序员宅基地

文章浏览阅读3.3k次。堡垒机可以为企业实现服务器、网络设备、数据库、安全设备等的集中管控和安全可靠运行,帮助IT运维人员提高工作效率。通俗来说,就是用来控制哪些人可以登录哪些资产(事先防范和事中控制),以及录像记录登录资产后做了什么事情(事后溯源)。由于堡垒机内部保存着企业所有的设备资产和权限关系,是企业内部信息安全的重要一环。但目前出现的以下问题产生了很大安全隐患:密码设置过于简单,容易被暴力破解;为方便记忆,设置统一的密码,一旦单点被破,极易引发全面危机。在单一的静态密码验证机制下,登录密码是堡垒机安全的唯一_horizon宁盾双因素配置

谷歌浏览器安装(Win、Linux、离线安装)_chrome linux debian离线安装依赖-程序员宅基地

文章浏览阅读7.7k次,点赞4次,收藏16次。Chrome作为一款挺不错的浏览器,其有着诸多的优良特性,并且支持跨平台。其支持(Windows、Linux、Mac OS X、BSD、Android),在绝大多数情况下,其的安装都很简单,但有时会由于网络原因,无法安装,所以在这里总结下Chrome的安装。Windows下的安装:在线安装:离线安装:Linux下的安装:在线安装:离线安装:..._chrome linux debian离线安装依赖

烤仔TVの尚书房 | 逃离北上广?不如押宝越南“北上广”-程序员宅基地

文章浏览阅读153次。中国发达城市榜单每天都在刷新,但无非是北上广轮流坐庄。北京拥有最顶尖的文化资源,上海是“摩登”的国际化大都市,广州是活力四射的千年商都。GDP和发展潜力是衡量城市的数字指...

随便推点

java spark的使用和配置_使用java调用spark注册进去的程序-程序员宅基地

文章浏览阅读3.3k次。前言spark在java使用比较少,多是scala的用法,我这里介绍一下我在项目中使用的代码配置详细算法的使用请点击我主页列表查看版本jar版本说明spark3.0.1scala2.12这个版本注意和spark版本对应,只是为了引jar包springboot版本2.3.2.RELEASEmaven<!-- spark --> <dependency> <gro_使用java调用spark注册进去的程序

汽车零部件开发工具巨头V公司全套bootloader中UDS协议栈源代码,自己完成底层外设驱动开发后,集成即可使用_uds协议栈 源代码-程序员宅基地

文章浏览阅读4.8k次。汽车零部件开发工具巨头V公司全套bootloader中UDS协议栈源代码,自己完成底层外设驱动开发后,集成即可使用,代码精简高效,大厂出品有量产保证。:139800617636213023darcy169_uds协议栈 源代码

AUTOSAR基础篇之OS(下)_autosar 定义了 5 种多核支持类型-程序员宅基地

文章浏览阅读4.6k次,点赞20次,收藏148次。AUTOSAR基础篇之OS(下)前言首先,请问大家几个小小的问题,你清楚:你知道多核OS在什么场景下使用吗?多核系统OS又是如何协同启动或者关闭的呢?AUTOSAR OS存在哪些功能安全等方面的要求呢?多核OS之间的启动关闭与单核相比又存在哪些异同呢?。。。。。。今天,我们来一起探索并回答这些问题。为了便于大家理解,以下是本文的主题大纲:[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-JCXrdI0k-1636287756923)(https://gite_autosar 定义了 5 种多核支持类型

VS报错无法打开自己写的头文件_vs2013打不开自己定义的头文件-程序员宅基地

文章浏览阅读2.2k次,点赞6次,收藏14次。原因:自己写的头文件没有被加入到方案的包含目录中去,无法被检索到,也就无法打开。将自己写的头文件都放入header files。然后在VS界面上,右键方案名,点击属性。将自己头文件夹的目录添加进去。_vs2013打不开自己定义的头文件

【Redis】Redis基础命令集详解_redis命令-程序员宅基地

文章浏览阅读3.3w次,点赞80次,收藏342次。此时,可以将系统中所有用户的 Session 数据全部保存到 Redis 中,用户在提交新的请求后,系统先从Redis 中查找相应的Session 数据,如果存在,则再进行相关操作,否则跳转到登录页面。此时,可以将系统中所有用户的 Session 数据全部保存到 Redis 中,用户在提交新的请求后,系统先从Redis 中查找相应的Session 数据,如果存在,则再进行相关操作,否则跳转到登录页面。当数据量很大时,count 的数量的指定可能会不起作用,Redis 会自动调整每次的遍历数目。_redis命令

URP渲染管线简介-程序员宅基地

文章浏览阅读449次,点赞3次,收藏3次。URP的设计目标是在保持高性能的同时,提供更多的渲染功能和自定义选项。与普通项目相比,会多出Presets文件夹,里面包含着一些设置,包括本色,声音,法线,贴图等设置。全局只有主光源和附加光源,主光源只支持平行光,附加光源数量有限制,主光源和附加光源在一次Pass中可以一起着色。URP:全局只有主光源和附加光源,主光源只支持平行光,附加光源数量有限制,一次Pass可以计算多个光源。可编程渲染管线:渲染策略是可以供程序员定制的,可以定制的有:光照计算和光源,深度测试,摄像机光照烘焙,后期处理策略等等。_urp渲染管线