webshell检测方式深度剖析 ---统计学特征检测_neopi-程序员宅基地

技术标签: 恶意脚本检测  

概论

该篇文章讲述了NeoPI如何利用统计学特征来检测webshell,笔者认为NeoPI选择的这些统计学方法在webshell检测上有些鸡肋,没有太大的实用效果。

反而其中的各种统计学方法值得学习一下,因此文章会重点讲解这些统计学特征的原理,以求可以举一反三,并应用在其他领域。

统计学特征

NeoPi使用以下五种统计学特征检测方法,下面分别来分析各种方法的原理和代码实现(代码部分只选择了核心代码并附加了注释,方便大家阅读。):

重合指数

重合指数法是密码分析学的一种工具,主要用于多表代换的密码破译。
以纯英文文本为例,它的基本原理可以定义如下:

X = x 1 x 2 . . . x n X=x_1x_2...x_n X=x1x2...xn是一个长度为 n n n的英文字符串, X X X的重合指数定义为 X X X中的两个随机元素相同的概率,记为 I c ( X ) I_c(X) Ic(X)。假设英文字母 A A A B B B C C C,…在X中的出现次数分别为 f 1 f_1 f1 f 2 f_2 f2,…, f 25 f_{25} f25。显然,从X中任意选择两个元素共有 C 25 2 C^{2}_{25} C252种组合,选取的元素同时为第 i i i个英文字母的情况有 C f i 2 C^{2}_{f_i} Cfi2种组合, 0 < = i < = 25 0<=i<=25 0<=i<=25。因此,有
I c ( X ) = ∑ i = 0 25 ( C f 2 / C n 2 ) = ∑ i = 0 25 ( f i ( f i − 1 ) / n ( n − 1 ) ) I{_c}(X) =\sum_{i=0}^{25}(C_f^2/C_n^2) = \sum_{i=0}^{25}(f_i(f_i-1)/n(n-1)) Ic(X)=i=025(Cf2/Cn2)=i=025(fi(fi1)/n(n1))

根据统计,在英文中各个字母出现的频率是特定的,如下表 :

字母 概率 字母 概率
A 0.082 N 0.067
B 0.015 O 0.075
C 0.028 P 0.019
D 0.043 Q 0.001
E 0.127 R 0.060
F 0.022 S 0.063
G 0.020 T 0.091
H 0.061 U 0.028
I 0.070 V 0.010
J 0.002 W 0.002
K 0.008 X 0.001
L 0.040 Y 0.020
M 0.024 Z 0.001

将英文字母A,B,C,…,Z的期望概率分别记为 p 0 , p 1 , p 2 , . . . , p 25 p_0,p_1,p_2,...,p_{25} p0p1p2...p25,则有一段正常英文文本的期望重合指数为 I c ( X ) ≈ ∑ i = 0 25 ( p i 2 ) = 0.065 I_c(X)\approx \sum_{i=0}^{25}(p_i^2) = 0.065 Ic(X)i=025(pi2)=0.065

如上所述,一个纯英文的且编码风格良好(一般在软件开发时,会采用统一的函数及有意义的变量名编写)的源代码计算出的重合指数会趋近于0.065。考虑到文件中的中文注释,虽然计算出的重合指数会偏离0,065,但同样会趋于相似,呈现正态分布。

而加密或者混淆后的webshell 与原 web 应用不相关,其字符的排列通常没有特征可言,计算出的重合指数与正常文件的重合指数相差较大(混淆后的重合指数通常较小),一定程度上,可以作为webshell判定的依据。

重合指数的计算比较简单,代码如下:

# @param data 从文件中取出的全部内容数据
 # @return ic 返回计算好的重合指数
 def index_of_coincidence(data):
       """计算文件内容的重合指数"""
       if not data:
           return 0
       char_count = 0       # 保存在data中任意选择两个字符,这两个字符相同的情形的数量
       total_char_count = 0 # 保存在data所有字符的数量

        # 遍历单字节代表的256字符
       for x in range(256):
           char = chr(x)
           charcount = data.count(char)              # 计算当前字符在data中的数量
           char_count += charcount * (charcount - 1) # 计算在data中任意选择两个字符,这两个字符都为当前字符的情形的数量,并累加
           total_char_count += charcount             # 计算当前字符在data中的数量,并累加
       
       # 按照重合指数的计算方法进行计算
       ic = float(char_count)/(total_char_count * (total_char_count - 1))
       return ic

信息熵

熵,是一个热力学的概念,用来度量封闭系统的混乱程度。但在历史的发展中,造就了它非常丰富的内涵,进入了很多学科的视野。

1948年,香农提出了“信息熵”的概念,解决了对信息的量化度量问题。信息量是对信息的度量,就跟时间的度量是秒一样,当我们考虑一个离散的随机变量x的时候,当我们观察到的这个变量的一个具体值的时候,我们接收到了多少信息呢?

多少信息用信息量来衡量,而我们接受到的信息量跟具体发生的事件有关。

信息的大小跟随机事件的概率有关。越小概率的事情发生了产生的信息量越大,如太阳从西边升起来了;越大概率的事情发生了产生的信息量越小,如太阳从东边升起来了(肯定发生,没什么信息量)。
信息熵的公式定义如下:

H ( X ) = − ∑ i = 1 N p ( x i ) l o g ( p ( x i ) ) H(X)=- \sum_{i=1}^{N}p(x_i)log(p(x_i)) H(X)=i=1Np(xi)log(p(xi))
其中, p ( x i ) 代 表 随 机 事 件 p(x_i)代表随机事件 p(xi) x i x_i xi的概率,对数一般以2为底。对应到文件熵上,一般使 p ( x i ) p(x_i) p(xi)为字符 x i x_i xi在文件内容中出现的概率。

那么类似于重合指数,加密混淆后的webshell通常通篇都是没有任何意义和规律的字符, 其通过计算公式得出的信息熵值会偏离平均值较大。

计算信息熵的代码如下:

# @param data 从文件中取出的全部内容数据
 # @return entropy 返回计算出的文件熵
def calculate(self,data):
       """计算文件信息熵."""

       if not data:
           return 0
           
       entropy = 0 # 保存最终熵值
       self.stripped_data =data.replace(' ', '') # 去掉文件内容中的空格
       
       # 遍历所有asci 256个字符
       for x in range(256):
           p_x = float(self.stripped_data.count(chr(x)))/len(self.stripped_data) # 计算单个字符出现的概率
           if p_x > 0:
               entropy += - p_x * math.log(p_x, 2) # 计算该字符的熵值并累加
       return entropy

最长单词

一般在软件开发时,其使用的字符串、函数名、变量名都会尽可能有规律和简短,但是,通过变形和加密往往会构造;超长的字符串, 通过检测代码中的最长字符串,并把最有可能是 webshell 的文件提供给管理员判断。

代码如下:

# @param data 从文件中取出的全部内容数据
# @return longest_word, longest 返回最长单词的内容和长度
def LongestWord(self,data):
       """查找文件内容中长度最长的单词"""
       if not data:
           return "", 0

       longest = 0 # 保存最长单词的长度
       longest_word = "" # 保存最长单词的内容
       
       words = re.split("[\s,\n,\r]", data) # 将文件内容按照空格和换行进行分词
       if words:
           for word in words:
               length = len(word)
               if length > longest: # 循环查找最长单词
                   longest = length
                   longest_word = word
       return longest_word,longest

恶意特征

在文件中搜索已知的恶意代码字符串片段,通过正则表达式,在文件内查找预定义的恶意特征。
这部分其实是静态检测,但是NeoPI也扩展添加了这部分的能力。

代码如下:

# @param data 从文件中取出的全部内容数据
# @return len(matches) 返回匹配的数量
def signature_nasty(self, data): 
       """查找文件的恶意特征"""
       if not data:
           return "", 0
       
       # 查找文件内下面所列的恶意函数 
       valid_regex = re.compile('(eval\(|file_put_contents|base64_decode|python_eval|exec\(|passthru|popen|proc_open|pcntl|assert\(|system\(|shell)', re.I)
       matches = re.findall(valid_regex, data)
       return len(matches)

压缩比

正常的代码通常编码风格良好,并且文件内有一定的空行和空格作为分隔,进行压缩时能有较大的压缩比。但是经过混淆后的代码通常没有空格和空行,而且字符顺序混乱,进行压缩时压缩比较小。

代码如下:

# @param data 从文件中取出的全部内容数据
# @return ratio 返回计算出的压缩比
def calculate(self, data):
       if not data:
           return "", 0
       compressed = zlib.compress(data)
       ratio =  float(len(data)) / float(len(compressed))
       self.results.append({
    "filename":filename, "value":ratio})
       return ratio

检测结果评测

NeoPI本身不给出一个文件是不是webshell的判断,它只是计算各种统计特征值,然后针对每一个特征值做出一个排名。在实际应用中,可以选择任意特征值的排名组合来判断。

为了让测试更有代表性,笔者采用如下策略:

首先进行如下形式化定义:

W m i n ( x ) = W o r d P r e s s 中 相 应 特 征 最 小 的 x 个 文 件 的 平 均 值 W_{min}(x) = WordPress中相应特征最小的x个文件的平均值 Wmin(x)=WordPressx
W m a x ( x ) = W o r d P r e s s 中 相 应 特 征 最 大 的 x 个 文 件 的 平 均 值 W_{max}(x) = WordPress中相应特征最大的x个文件的平均值 Wmax(x)=WordPressx
B m i n ( x ) = 300 个 黑 样 本 中 相 应 特 征 最 小 的 x 个 文 件 的 平 均 值 B_{min}(x) = 300个黑样本中相应特征最小的x个文件的平均值 Bmin(x)=300x
B m a x ( x ) = 300 个 黑 样 本 中 相 应 特 征 最 大 的 x 个 文 件 的 平 均 值 B_{max}(x) = 300个黑样本中相应特征最大的x个文件的平均值 Bmax(x)=300x

1、重合指数判断策略

2、信息熵判断策略

3、最长单词判断策略
同信息熵的判断策略

4、恶意特征
存在恶意特征则判定为webshell

5、压缩比
同信息熵的判断策略

实际测试结果如下:

统计特征 检出率 误报率
重合指数 94% 0%
信息熵 58% 0.5%
最长单词 42% 0%
恶意特征 79% 4%
压缩比 10% 0%

notes:由于NeoPI主要用来检测混淆webshell,所以笔者的阈值选择优先于黑样本和白样本中的混淆文件的特征值。

总结

NeoPi的检测重心在于识别混淆代码,它常常在识别模糊代码或者混淆编排的木马方面表现良好,但是也依赖于检测阈值的选取。同时,NeoPi的检测机制对未经模糊处理的代码检测能力较弱。

版权声明:本文为博主原创文章,遵循 CC 4.0 BY-SA 版权协议,转载请附上原文出处链接和本声明。
本文链接:https://blog.csdn.net/qq_31032141/article/details/107207911

智能推荐

Docker 快速上手学习入门教程_docker菜鸟教程-程序员宅基地

文章浏览阅读2.5w次,点赞6次,收藏50次。官方解释是,docker 容器是机器上的沙盒进程,它与主机上的所有其他进程隔离。所以容器只是操作系统中被隔离开来的一个进程,所谓的容器化,其实也只是对操作系统进行欺骗的一种语法糖。_docker菜鸟教程

电脑技巧:Windows系统原版纯净软件必备的两个网站_msdn我告诉你-程序员宅基地

文章浏览阅读5.7k次,点赞3次,收藏14次。该如何避免的,今天小编给大家推荐两个下载Windows系统官方软件的资源网站,可以杜绝软件捆绑等行为。该站提供了丰富的Windows官方技术资源,比较重要的有MSDN技术资源文档库、官方工具和资源、应用程序、开发人员工具(Visual Studio 、SQLServer等等)、系统镜像、设计人员工具等。总的来说,这两个都是非常优秀的Windows系统镜像资源站,提供了丰富的Windows系统镜像资源,并且保证了资源的纯净和安全性,有需要的朋友可以去了解一下。这个非常实用的资源网站的创建者是国内的一个网友。_msdn我告诉你

vue2封装对话框el-dialog组件_<el-dialog 封装成组件 vue2-程序员宅基地

文章浏览阅读1.2k次。vue2封装对话框el-dialog组件_

MFC 文本框换行_c++ mfc同一框内输入二行怎么换行-程序员宅基地

文章浏览阅读4.7k次,点赞5次,收藏6次。MFC 文本框换行 标签: it mfc 文本框1.将Multiline属性设置为True2.换行是使用"\r\n" (宽字符串为L"\r\n")3.如果需要编辑并且按Enter键换行,还要将 Want Return 设置为 True4.如果需要垂直滚动条的话将Vertical Scroll属性设置为True,需要水平滚动条的话将Horizontal Scroll属性设_c++ mfc同一框内输入二行怎么换行

redis-desktop-manager无法连接redis-server的解决方法_redis-server doesn't support auth command or ismis-程序员宅基地

文章浏览阅读832次。检查Linux是否是否开启所需端口,默认为6379,若未打开,将其开启:以root用户执行iptables -I INPUT -p tcp --dport 6379 -j ACCEPT如果还是未能解决,修改redis.conf,修改主机地址:bind 192.168.85.**;然后使用该配置文件,重新启动Redis服务./redis-server redis.conf..._redis-server doesn't support auth command or ismisconfigured. try

实验四 数据选择器及其应用-程序员宅基地

文章浏览阅读4.9k次。济大数电实验报告_数据选择器及其应用

随便推点

灰色预测模型matlab_MATLAB实战|基于灰色预测河南省社会消费品零售总额预测-程序员宅基地

文章浏览阅读236次。1研究内容消费在生产中占据十分重要的地位,是生产的最终目的和动力,是保持省内经济稳定快速发展的核心要素。预测河南省社会消费品零售总额,是进行宏观经济调控和消费体制改变创新的基础,是河南省内人民对美好的全面和谐社会的追求的要求,保持河南省经济稳定和可持续发展具有重要意义。本文建立灰色预测模型,利用MATLAB软件,预测出2019年~2023年河南省社会消费品零售总额预测值分别为21881...._灰色预测模型用什么软件

log4qt-程序员宅基地

文章浏览阅读1.2k次。12.4-在Qt中使用Log4Qt输出Log文件,看这一篇就足够了一、为啥要使用第三方Log库,而不用平台自带的Log库二、Log4j系列库的功能介绍与基本概念三、Log4Qt库的基本介绍四、将Log4qt组装成为一个单独模块五、使用配置文件的方式配置Log4Qt六、使用代码的方式配置Log4Qt七、在Qt工程中引入Log4Qt库模块的方法八、获取示例中的源代码一、为啥要使用第三方Log库,而不用平台自带的Log库首先要说明的是,在平时开发和调试中开发平台自带的“打印输出”已经足够了。但_log4qt

100种思维模型之全局观思维模型-67_计算机中对于全局观的-程序员宅基地

文章浏览阅读786次。全局观思维模型,一个教我们由点到线,由线到面,再由面到体,不断的放大格局去思考问题的思维模型。_计算机中对于全局观的

线程间控制之CountDownLatch和CyclicBarrier使用介绍_countdownluach于cyclicbarrier的用法-程序员宅基地

文章浏览阅读330次。一、CountDownLatch介绍CountDownLatch采用减法计算;是一个同步辅助工具类和CyclicBarrier类功能类似,允许一个或多个线程等待,直到在其他线程中执行的一组操作完成。二、CountDownLatch俩种应用场景: 场景一:所有线程在等待开始信号(startSignal.await()),主流程发出开始信号通知,既执行startSignal.countDown()方法后;所有线程才开始执行;每个线程执行完发出做完信号,既执行do..._countdownluach于cyclicbarrier的用法

自动化监控系统Prometheus&Grafana_-自动化监控系统prometheus&grafana实战-程序员宅基地

文章浏览阅读508次。Prometheus 算是一个全能型选手,原生支持容器监控,当然监控传统应用也不是吃干饭的,所以就是容器和非容器他都支持,所有的监控系统都具备这个流程,_-自动化监控系统prometheus&grafana实战

React 组件封装之 Search 搜索_react search-程序员宅基地

文章浏览阅读4.7k次。输入关键字,可以通过键盘的搜索按钮完成搜索功能。_react search