k8s-高可用部署-calico插件_calico-3.9.2.yaml-程序员宅基地

技术标签: kubernetes  # Kubernetes  

kubernetes高可用部署参考:
Creating Highly Available Clusters with kubeadm | Kubernetes
GitHub - kubernetes-sigs/kubespray: Deploy a Production Ready Kubernetes Cluster
GitHub - wise2c-devops/breeze: Deploy a Production Ready Kubernetes Cluster with graphical interface
GitHub - cookeem/kubeadm-ha: Kubernetes high availiability deploy based on kubeadm, loadbalancer included (English/中文 for v1.15 - v1.20+)

一、拓扑选择

配置高可用(HA)Kubernetes集群,有以下两种可选的etcd拓扑:

  • 集群master节点与etcd节点共存,etcd也运行在控制平面节点上
  • 使用外部etcd节点,etcd节点与master在不同节点上运行

1.1 堆叠的etcd拓扑

堆叠HA集群是这样的拓扑,其中etcd提供的分布式数据存储集群与由kubeamd管理的运行master组件的集群节点堆叠部署。
每个master节点运行kube-apiserver,kube-scheduler和kube-controller-manager的一个实例。kube-apiserver使用负载平衡器暴露给工作节点。
每个master节点创建一个本地etcd成员,该etcd成员仅与本节点kube-apiserver通信。这同样适用于本地kube-controller-manager 和kube-scheduler实例。
该拓扑将master和etcd成员耦合在相同节点上。比设置具有外部etcd节点的集群更简单,并且更易于管理复制。
但是,堆叠集群存在耦合失败的风险。如果一个节点发生故障,则etcd成员和master实例都将丢失,并且冗余会受到影响。您可以通过添加更多master节点来降低此风险。
因此,您应该为HA群集运行至少三个堆叠的master节点。
这是kubeadm中的默认拓扑。使用kubeadm init和kubeadm join –experimental-control-plane命令时,在master节点上自动创建本地etcd成员。

1.2 外部etcd拓扑

具有外部etcd的HA集群是这样的拓扑,其中由etcd提供的分布式数据存储集群部署在运行master组件的节点形成的集群外部。
像堆叠ETCD拓扑结构,在外部ETCD拓扑中的每个master节点运行一个kube-apiserver,kube-scheduler和kube-controller-manager实例。并且kube-apiserver使用负载平衡器暴露给工作节点。但是,etcd成员在不同的主机上运行,每个etcd主机与kube-apiserver每个master节点进行通信。
此拓扑将master节点和etcd成员分离。因此,它提供了HA设置,其中丢失master实例或etcd成员具有较小的影响并且不像堆叠的HA拓扑那样影响集群冗余。
但是,此拓扑需要两倍于堆叠HA拓扑的主机数。具有此拓扑的HA群集至少需要三个用于master节点的主机和三个用于etcd节点的主机。

二、部署要求

使用kubeadm部署高可用性Kubernetes集群的两种不同方法:

  • 使用堆叠master节点。这种方法需要较少的基础设施,etcd成员和master节点位于同一位置。
  • 使用外部etcd集群。这种方法需要更多的基础设施, master节点和etcd成员是分开的。

2.1 部署要求

  • 至少3个master节点
  • 至少3个worker节点
  • 所有节点网络全部互通(公共或私有网络)
  • 所有机器都有sudo权限
  • 从一个设备到系统中所有节点的SSH访问
  • 所有节点安装kubeadm和kubelet,kubectl是可选的。
  • 针对外部etcd集群,你需要为etcd成员额外提供3个节点

三、基本配置

3.1 节点信息:

主机名 IP地址 角色 CPU/MEM 磁盘
k8s-master01 192.168.100.235 master 4C8G 100G
k8s-master02 192.168.100.236 master 4C8G 100G
k8s-master03 192.168.100.237 master 4C8G 100G
k8s-node01 192.168.100.238 node 4C8G 100G
K8S VIP 192.168.100.201 -

3.2 初始化

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
#配置主机名
$ hostnamectl set-hostname k8s-master01
$ hostnamectl set-hostname k8s-master02
$ hostnamectl set-hostname k8s-master03
$ hostnamectl set-hostname k8s-node01
#修改/etc/hosts
$ cat >> /etc/hosts << EOF
192.168.100.235 k8s-master01
192.168.100.236 k8s-master02
192.168.100.237 k8s-master03
192.168.100.238 k8s-node01
192.168.100.201 k8s-slb
EOF
 
# 开启firewalld防火墙并允许所有流量
$ systemctl stop firewalld && systemctl disable firewalld
# 关闭selinux
$ sed -i 's/^SELINUX=enforcing$/SELINUX=disabled/' /etc/selinux/config && setenforce 0
 
#关闭swap
$ swapoff -a
$ yes | cp /etc/fstab /etc/fstab_bak
$ cat /etc/fstab_bak | grep -v swap > /etc/fstab

3.3 配置时间同步

为了简单起见,就使用ntp进行时间同步了!

1
2
3
4
# 时间同步
$ yum install ntpdate -y
$ ntpdate ntp.aliyun.com
$ timedatectl set-timezone Asia/Shanghai

3.4 内核升级

升级完成后,内核版本:

1
2
$ uname -r
4.4.248-1.el7.elrepo.x86_64

3.5 加载IPVS模块

1
2
3
4
5
6
7
8
9
10
11
12
13
# 在所有的Kubernetes节点执行以下脚本(若内核大于4.19替换nf_conntrack_ipv4为nf_conntrack):
$ cat > /etc/sysconfig/modules/ipvs.modules <<EOF
#!/bin/bash
modprobe -- ip_vs
modprobe -- ip_vs_rr
modprobe -- ip_vs_wrr
modprobe -- ip_vs_sh
modprobe -- nf_conntrack
EOF
#执行脚本
$ chmod 755 /etc/sysconfig/modules/ipvs.modules && bash /etc/sysconfig/modules/ipvs.modules && lsmod | grep -e ip_vs -e nf_conntrack_ipv4
#安装相关管理工具
$ yum install ipset ipvsadm -y

3.6 配置内核参数

1
2
3
4
5
6
7
8
$ cat > /etc/sysctl.d/k8s.conf <<EOF
net.bridge.bridge-nf-call-ip6tables = 1
net.bridge.bridge-nf-call-iptables = 1
net.ipv4.ip_nonlocal_bind = 1
net.ipv4.ip_forward = 1
vm.swappiness=0
EOF
$ sysctl --system

四、负载均衡

部署集群前首选需要为kube-apiserver创建负载均衡器。
注意:负载平衡器有许多中配置方式。可以根据你的集群要求选择不同的配置方案。在云环境中,您应将master节点作为负载平衡器TCP转发的后端。此负载平衡器将流量分配到其目标列表中的所有健康master节点。apiserver的运行状况检查是对kube-apiserver侦听的端口的TCP检查(默认值:6443)。
负载均衡器必须能够与apiserver端口上的所有master节点通信。它还必须允许其侦听端口上的传入流量。另外确保负载均衡器的地址始终与kubeadm的ControlPlaneEndpoint地址匹配。
haproxy/nignx+keepalived是其中可选的负载均衡方案,针对公有云环境可以直接使用运营商提供的负载均衡产品。
部署时首先将第一个master节点添加到负载均衡器并使用以下命令测试连接:

1
$ nc -v LOAD_BALANCER_IP PORT

由于apiserver尚未运行,因此预计会出现连接拒绝错误。但是,超时意味着负载均衡器无法与master节点通信。如果发生超时,请重新配置负载平衡器以与master节点通信。将剩余的master节点添加到负载平衡器目标组。

4.1 安装负载均衡相关软件

1
$ yum install haproxy keepalived -y

4.2 配置haproxy

所有master节点的配置相同,如下:

注意:把apiserver地址改成自己节点规划的master地址

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
$ vim /etc/haproxy/haproxy.cfg
#---------------------------------------------------------------------
# Global settings
#---------------------------------------------------------------------
global
    # to have these messages end up in /var/log/haproxy.log you will
    # need to:
    #
    # 1) configure syslog to accept network log events.  This is done
    #    by adding the '-r' option to the SYSLOGD_OPTIONS in
    #    /etc/sysconfig/syslog
    #
    # 2) configure local2 events to go to the /var/log/haproxy.log
    #   file. A line like the following can be added to
    #   /etc/sysconfig/syslog
    #
    #    local2.*                       /var/log/haproxy.log
    #
    log         127.0.0.1 local2

    chroot      /var/lib/haproxy
    pidfile     /var/run/haproxy.pid
    maxconn     4000
    user        haproxy
    group       haproxy
    daemon

    # turn on stats unix socket
    stats socket /var/lib/haproxy/stats

#---------------------------------------------------------------------
# common defaults that all the 'listen' and 'backend' sections will
# use if not designated in their block
#---------------------------------------------------------------------
defaults
    mode                    http
    log                     global
    option                  httplog
    option                  dontlognull
    option http-server-close
    option                  redispatch
    retries                 3
    timeout http-request    10s
    timeout queue           1m
    timeout connect         10s
    timeout client          1m
    timeout server          1m
    timeout http-keep-alive 10s
    timeout check           10s
    maxconn                 3000

#---------------------------------------------------------------------
# kubernetes apiserver frontend which proxys to the backends
#---------------------------------------------------------------------
frontend kubernetes
    mode                 tcp
    bind                 *:16443
    option               tcplog
    default_backend      kubernetes-apiserver

#---------------------------------------------------------------------
# round robin balancing between the various backends
#---------------------------------------------------------------------
backend kubernetes-apiserver
    mode        tcp
    balance     roundrobin
    server  k8s-master01 192.168.100.235:6443 check
    server  k8s-master02 192.168.100.236:6443 check
    server  k8s-master03 192.168.100.237:6443 check

#---------------------------------------------------------------------
# collection haproxy statistics message
#---------------------------------------------------------------------
listen stats
    bind                 *:9999
    stats auth           admin:P@ssW0rd
    stats refresh        5s
    stats realm          HAProxy\ Statistics
    stats uri            /admin?stats

4.3 配置keepalived

k8s-master01

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
$ cat > /etc/keepalived/keepalived.conf <<EOF 
! Configuration File for keepalived

global_defs {
   router_id k8s
}

# 定义脚本
vrrp_script check_apiserver {
    script "/etc/keepalived/check_apiserver.sh"
    interval 2
    weight -5
    fall 3
    rise 2
}

vrrp_instance VI_1 {
    state MASTER 
    interface eth0 
    virtual_router_id 51
    priority 100
    advert_int 1
    authentication {
        auth_type PASS
        auth_pass ceb1b3ec013d66163d6ab
    }
    virtual_ipaddress {
        192.168.100.201
    }

}
EOF

k8s-master02

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
$ cat > /etc/keepalived/keepalived.conf <<EOF 
! Configuration File for keepalived

global_defs {
   router_id k8s
}

# 定义脚本
vrrp_script check_apiserver {
    script "/etc/keepalived/check_apiserver.sh"
    interval 2
    weight -5
    fall 3
    rise 2
}

vrrp_instance VI_1 {
    state MASTER 
    interface eth0 
    virtual_router_id 51
    priority 99
    advert_int 1
    authentication {
        auth_type PASS
        auth_pass ceb1b3ec013d66163d6ab
    }
    virtual_ipaddress {
        192.168.100.201
    }

}
EOF

k8s-master03

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
$ cat > /etc/keepalived/keepalived.conf <<EOF 
! Configuration File for keepalived

global_defs {
   router_id k8s
}

# 定义脚本
vrrp_script check_apiserver {
    script "/etc/keepalived/check_apiserver.sh"
    interval 2
    weight -5
    fall 3
    rise 2
}

vrrp_instance VI_1 {
    state MASTER 
    interface eth0 
    virtual_router_id 51
    priority 98
    advert_int 1
    authentication {
        auth_type PASS
        auth_pass ceb1b3ec013d66163d6ab
    }
    virtual_ipaddress {
        192.168.100.201
    }

}
EOF

4.4 编写健康监测脚本

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
$ vim /etc/keepalived/check-apiserver.sh
#!/bin/bash

function check_apiserver(){
 for ((i=0;i<5;i++))
 do
  apiserver_job_id=${pgrep kube-apiserver}
  if [[ ! -z ${apiserver_job_id} ]];then
   return
  else
   sleep 2
  fi
  apiserver_job_id=0
 done
}

# 1->running    0->stopped
check_apiserver
if [[ $apiserver_job_id -eq 0 ]];then
 /usr/bin/systemctl stop keepalived
 exit 1
else
 exit 0
fi

$ chmod 755 /etc/keepalived/check-apiserver.sh

4.5 启动haproxy和keepalived

1
2
$ systemctl enable --now keepalived
$ systemctl enable --now haproxy

五、安装docker

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
# 安装依赖软件包
$ yum install -y yum-utils device-mapper-persistent-data lvm2

# 添加Docker repository,这里改为国内阿里云yum源
$ yum-config-manager \
  --add-repo \
  http://mirrors.aliyun.com/docker-ce/linux/centos/docker-ce.repo

# 安装docker-ce
$ yum clean all && yum makecache && yum install -y docker-ce

## 创建 /etc/docker 目录
$ mkdir /etc/docker

# 配置镜像加速
$ echo "{\"registry-mirrors\": [\"https://registry.cn-hangzhou.aliyuncs.com\"]}" >> /etc/docker/daemon.json

# 重启docker服务
$ systemctl daemon-reload && systemctl restart docker && systemctl enable docker

六、安装kubeadm

1
2
3
4
5
6
7
8
9
10
11
12
13
#由于官方源国内无法访问,这里使用阿里云yum源进行替换:
$ cat <<EOF > /etc/yum.repos.d/kubernetes.repo
[kubernetes]
name=Kubernetes
baseurl=https://mirrors.aliyun.com/kubernetes/yum/repos/kubernetes-el7-x86_64
enabled=1
gpgcheck=1
repo_gpgcheck=1
gpgkey=https://mirrors.aliyun.com/kubernetes/yum/doc/yum-key.gpg https://mirrors.aliyun.com/kubernetes/yum/doc/rpm-package-key.gpg
EOF

$ yum install -y kubelet-1.18.2 kubeadm-1.18.2 kubectl-1.18.2 --disableexcludes=kubernetes
$ systemctl enable kubelet && systemctl start kubelet

七、部署k8s master、node节点

初始化参考:
kubeadm init | Kubernetes
v1beta1 package - k8s.io/kubernetes/cmd/kubeadm/app/apis/kubeadm/v1beta1 - pkg.go.dev

7.1 创建初始化配置文件

可以使用如下命令生成初始化配置文件:

1
$ kubeadm config print init-defaults > kubeadm-config.yaml

根据实际部署环境修改信息:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
apiVersion: kubeadm.k8s.io/v1beta1
bootstrapTokens:
- groups:
  - system:bootstrappers:kubeadm:default-node-token
  token: abcdef.0123456789abcdef
  ttl: 24h0m0s
  usages:
  - signing
  - authentication
kind: InitConfiguration
localAPIEndpoint:
  advertiseAddress: 192.168.100.235
  bindPort: 6443
nodeRegistration:
  criSocket: /var/run/dockershim.sock
  name: k8s-master01
  taints:
  - effect: NoSchedule
    key: node-role.kubernetes.io/master
---
apiServer:
  timeoutForControlPlane: 4m0s
apiVersion: kubeadm.k8s.io/v1beta1
certificatesDir: /etc/kubernetes/pki
clusterName: kubernetes
controlPlaneEndpoint: "k8s-slb:16443"
controllerManager: {}
dns:
  type: CoreDNS
etcd:
  local:
    dataDir: /var/lib/etcd
imageRepository: registry.aliyuncs.com/google_containers
kind: ClusterConfiguration
kubernetesVersion: v1.14.1
networking:
  dnsDomain: cluster.local
  podSubnet: "10.244.0.0/16"
  serviceSubnet: 10.96.0.0/12
scheduler: {}

---
apiVersion: kubeproxy.config.k8s.io/v1alpha1
kind: KubeProxyConfiguration
featureGates:
  SupportIPVSProxyMode: true
mode: ipvs

配置说明:

  • controlPlaneEndpoint:为vip地址和haproxy监听端口16443
  • imageRepository:由于国内无法访问google镜像仓库k8s.gcr.io,这里指定为阿里云镜像仓库registry.aliyuncs.com/google_containers
  • podSubnet:指定的IP地址段与后续部署的网络插件相匹配,这里需要部署flannel插件,所以配置为10.244.0.0/16
  • mode: ipvs:最后追加的配置为开启ipvs模式。

在集群搭建完成后可以使用如下命令查看生效的配置文件:

1
$ kubectl -n kube-system get cm kubeadm-config -oyaml

7.2 初始化master01节点

这里追加tee命令将初始化日志输出到kubeadm-init.log中以备用(可选)。

k8s v1.16 之前

1
$ kubeadm init --config=kubeadm-config.yaml --experimental-upload-certs | tee kubeadm-init.log

k8s v1.16 之后

1
$ kubeadm init --config=kubeadm-config.yaml --upload-certs | tee kubeadm-init.log

该命令指定了初始化时需要使用的配置文件,其中添加–experimental-upload-certs--upload-certs参数可以在后续执行加入节点时自动分发证书文件。

kubeadm init主要执行了以下操作:

  • [init]:指定版本进行初始化操作
  • [preflight] :初始化前的检查和下载所需要的Docker镜像文件
  • [kubelet-start]:生成kubelet的配置文件”/var/lib/kubelet/config.yaml”,没有这个文件kubelet无法启动,所以初始化之前的kubelet实际上启动失败。
  • [certificates]:生成Kubernetes使用的证书,存放在/etc/kubernetes/pki目录中。
  • [kubeconfig] :生成 KubeConfig 文件,存放在/etc/kubernetes目录中,组件之间通信需要使用对应文件。
  • [control-plane]:使用/etc/kubernetes/manifest目录下的YAML文件,安装 Master 组件。
  • [etcd]:使用/etc/kubernetes/manifest/etcd.yaml安装Etcd服务。
  • [wait-control-plane]:等待control-plan部署的Master组件启动。
  • [apiclient]:检查Master组件服务状态。
  • [uploadconfig]:更新配置
  • [kubelet]:使用configMap配置kubelet。
  • [patchnode]:更新CNI信息到Node上,通过注释的方式记录。
  • [mark-control-plane]:为当前节点打标签,打了角色Master,和不可调度标签,这样默认就不会使用Master节点来运行Pod。
  • [bootstrap-token]:生成token记录下来,后边使用kubeadm join往集群中添加节点时会用到
  • [addons]:安装附加组件CoreDNS和kube-proxy

说明:无论是初始化失败或者集群已经完全搭建成功,你都可以直接执行kubeadm reset命令清理集群或节点,然后重新执行kubeadm init或kubeadm join相关操作即可。

7.3 配置kubectl

1
2
3
4
5
6
7
$ mkdir -p $HOME/.kube
$ sudo cp -i /etc/kubernetes/admin.conf $HOME/.kube/config
$ sudo chown $(id -u):$(id -g) $HOME/.kube/config
$ yum -y install bash-completion
$ source /usr/share/bash-completion/bash_completion 
$ source <(kubectl completion bash)
$ echo "source <(kubectl completion bash)" >> ~/.bashrc

7.4 查看当前状态

1
2
3
4
5
$ kubectl get cs
NAME                 STATUS    MESSAGE             ERROR
controller-manager   Healthy   ok                  
scheduler            Healthy   ok                  
etcd-0               Healthy   {"health":"true"}

7.5 安装网络插件

kubernetes支持多种网络方案,这里简单介绍常用的flannel和calico安装方法,选择其中一种方案进行部署即可。

以下操作在master01节点执行即可。
安装flannel网络插件:
由于kube-flannel.yml文件指定的镜像从coreos镜像仓库拉取,可能拉取失败,可以从dockerhub搜索相关镜像进行替换,另外可以看到yml文件中定义的网段地址段为10.244.0.0/16

1
2
3
4
5
$ wget https://raw.githubusercontent.com/coreos/flannel/master/Documentation/kube-flannel.yml
$ cat kube-flannel.yml | grep image
$ cat kube-flannel.yml | grep 10.244
$ sed -i 's#quay.io/coreos/flannel:v0.11.0-amd64#willdockerhub/flannel:v0.11.0-amd64#g' kube-flannel.yml
$ kubectl apply -f kube-flannel.yml

安装calico网络插件(可选):
安装参考:Kubernetes

1
2
3
$ wget https://kuboard.cn/install-script/calico/calico-3.9.2.yaml
$ cat calico-3.9.2.yaml | grep 10.244
$ kubectl apply -f calico-3.9.2.yaml

注意该yaml文件中默认CIDR为192.168.0.0/16,需要与初始化时kube-config.yaml中的配置一致,如果不同请下载该yaml修改后运行。

7.6 添加master节点

从初始化输出或kubeadm-init.log中获取命令:

1
2
3
$ kubeadm join k8s-slb:16443 --token abcdef.0123456789abcdef \
    --discovery-token-ca-cert-hash sha256:36c5f93203130cea88d162f28d54cd47f07f887c470e8a2f1b11d0ee48ef5b28 \
    --control-plane --certificate-key afe2d59c138e7f0c16344c58fe4981069e21570f848f5ba50531f8f698f75302

执行以上命令,依次将k8s-master02和k8s-master03加入到集群中!

7.7 添加node节点

1
2
$ kubeadm join k8s-slb:16443 --token abcdef.0123456789abcdef \
    --discovery-token-ca-cert-hash sha256:36c5f93203130cea88d162f28d54cd47f07f887c470e8a2f1b11d0ee48ef5b28

八、集群验证

8.1 查看node节点运行情况

1
2
3
4
5
6
$ kubectl get node
NAME           STATUS   ROLES    AGE     VERSION
k8s-master01   Ready    master   2m30s   v1.18.2
k8s-master02   Ready    master   2m34s   v1.18.2
k8s-master03   Ready    master   2m37s   v1.18.2
k8s-node01     Ready    <none>   2m49s   v1.18.2

8.2 查看pod运行情况

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
$ kubectl get pod  -n kube-system -o wide 
NAME                                       READY   STATUS    RESTARTS   AGE     IP                NODE           NOMINATED NODE   READINESS GATES
calico-kube-controllers-7d94cd8f86-b8vzs   1/1     Running   0          8m6s    10.224.32.130     k8s-master01   <none>           <none>
calico-node-4rqj8                          1/1     Running   0          3m47s   192.168.100.236   k8s-master02   <none>           <none>
calico-node-94sw6                          1/1     Running   0          5m20s   192.168.100.238   k8s-node01     <none>           <none>
calico-node-gk7hg                          1/1     Running   0          8m7s    192.168.100.235   k8s-master01   <none>           <none>
calico-node-vpll4                          1/1     Running   0          5m8s    192.168.100.237   k8s-master03   <none>           <none>
coredns-7ff77c879f-97tjw                   1/1     Running   0          11m     10.224.32.131     k8s-master01   <none>           <none>
coredns-7ff77c879f-mp98g                   1/1     Running   0          11m     10.224.32.129     k8s-master01   <none>           <none>
etcd-k8s-master01                          1/1     Running   0          11m     192.168.100.235   k8s-master01   <none>           <none>
etcd-k8s-master02                          1/1     Running   0          3m45s   192.168.100.236   k8s-master02   <none>           <none>
etcd-k8s-master03                          1/1     Running   0          4m41s   192.168.100.237   k8s-master03   <none>           <none>
kube-apiserver-k8s-master01                1/1     Running   0          11m     192.168.100.235   k8s-master01   <none>           <none>
kube-apiserver-k8s-master02                1/1     Running   1          3m47s   192.168.100.236   k8s-master02   <none>           <none>
kube-apiserver-k8s-master03                1/1     Running   0          5m7s    192.168.100.237   k8s-master03   <none>           <none>
kube-controller-manager-k8s-master01       1/1     Running   1          11m     192.168.100.235   k8s-master01   <none>           <none>
kube-controller-manager-k8s-master02       1/1     Running   0          3m47s   192.168.100.236   k8s-master02   <none>           <none>
kube-controller-manager-k8s-master03       1/1     Running   0          5m7s    192.168.100.237   k8s-master03   <none>           <none>
kube-proxy-66ntf                           1/1     Running   0          5m8s    192.168.100.237   k8s-master03   <none>           <none>
kube-proxy-7n7nw                           1/1     Running   0          11m     192.168.100.235   k8s-master01   <none>           <none>
kube-proxy-8qknh                           1/1     Running   0          5m20s   192.168.100.238   k8s-node01     <none>           <none>
kube-proxy-rhqf4                           1/1     Running   0          3m47s   192.168.100.236   k8s-master02   <none>           <none>
kube-scheduler-k8s-master01                1/1     Running   1          11m     192.168.100.235   k8s-master01   <none>           <none>
kube-scheduler-k8s-master02                1/1     Running   0          3m46s   192.168.100.236   k8s-master02   <none>           <none>
kube-scheduler-k8s-master03                1/1     Running   0          5m8s    192.168.100.237   k8s-master03   <none>           <none>

8.3 验证IPVS

查看kube-proxy日志,输出信息包含Using ipvs Proxier.

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
$ kubectl logs -f kube-proxy-8qknh -n kube-system
W1221 10:19:43.092405       1 feature_gate.go:235] Setting GA feature gate SupportIPVSProxyMode=true. It will be removed in a future release.
W1221 10:19:43.092936       1 feature_gate.go:235] Setting GA feature gate SupportIPVSProxyMode=true. It will be removed in a future release.
I1221 10:19:43.590876       1 node.go:136] Successfully retrieved node IP: 192.168.100.238
I1221 10:19:43.590973       1 server_others.go:259] Using ipvs Proxier.
W1221 10:19:43.591887       1 proxier.go:429] IPVS scheduler not specified, use rr by default
I1221 10:19:43.592412       1 server.go:583] Version: v1.18.2
I1221 10:19:43.593666       1 conntrack.go:100] Set sysctl 'net/netfilter/nf_conntrack_max' to 131072
I1221 10:19:43.593763       1 conntrack.go:52] Setting nf_conntrack_max to 131072
I1221 10:19:43.593944       1 conntrack.go:100] Set sysctl 'net/netfilter/nf_conntrack_tcp_timeout_established' to 86400
I1221 10:19:43.594082       1 conntrack.go:100] Set sysctl 'net/netfilter/nf_conntrack_tcp_timeout_close_wait' to 3600
I1221 10:19:43.594668       1 config.go:133] Starting endpoints config controller
I1221 10:19:43.594728       1 shared_informer.go:223] Waiting for caches to sync for endpoints config
I1221 10:19:43.594789       1 config.go:315] Starting service config controller
I1221 10:19:43.594808       1 shared_informer.go:223] Waiting for caches to sync for service config
I1221 10:19:43.695036       1 shared_informer.go:230] Caches are synced for service config 
I1221 10:19:43.695053       1 shared_informer.go:230] Caches are synced for endpoints config

8.4 etcd集群验证

1
2
3
4
5
6
7
8
9
10
11
12
13
$ kubectl -n kube-system exec etcd-k8s-master01 -- etcdctl  --endpoints=https://192.168.100.235:2379  --cacert=/etc/kubernetes/pki/etcd/ca.crt  --cert=/etc/kubernetes/pki/etcd/server.crt  --key=/etc/kubernetes/pki/etcd/server.key member list  -wtable
+------------------+---------+--------------+------------------------------+------------------------------+------------+
|        ID        | STATUS  |     NAME     |          PEER ADDRS          |         CLIENT ADDRS         | IS LEARNER |
+------------------+---------+--------------+------------------------------+------------------------------+------------+
|  b22d109a6211c55 | started | k8s-master02 | https://192.168.100.236:2380 | https://192.168.100.236:2379 |      false |
|  c07cc16c40f2638 | started | k8s-master01 | https://192.168.100.235:2380 | https://192.168.100.235:2379 |      false |
| f122e0cdce559ffc | started | k8s-master03 | https://192.168.100.237:2380 | https://192.168.100.237:2379 |      false |
+------------------+---------+--------------+------------------------------+------------------------------+------------+

$ kubectl -n kube-system exec etcd-k8s-master01 -- etcdctl  --endpoints=https://192.168.100.235:2379,https://192.168.100.236:2379,https://192.168.100.237:2379  --cacert=/etc/kubernetes/pki/etcd/ca.crt  --cert=/etc/kubernetes/pki/etcd/server.crt  --key=/etc/kubernetes/pki/etcd/server.key endpoint status 
https://192.168.100.235:2379, c07cc16c40f2638, 3.4.3, 3.8 MB, true, false, 15, 6776, 6776, 
https://192.168.100.236:2379, b22d109a6211c55, 3.4.3, 3.7 MB, false, false, 15, 6776, 6776, 
https://192.168.100.237:2379, f122e0cdce559ffc, 3.4.3, 3.7 MB, false, false, 15, 6776, 6776,

8.5 验证HA

在master01上执行关机操作,建议提前在其他节点配置kubectl命令支持。

1
$ shutdown -h now

在任意运行节点验证集群状态,master01节点NotReady,集群可正常访问:

1
2
3
4
5
6
$ kubectl get node
NAME           STATUS     ROLES    AGE   VERSION
k8s-master01   NotReady   master   33m   v1.18.2
k8s-master02   Ready      master   26m   v1.18.2
k8s-master03   Ready      master   27m   v1.18.2
k8s-node01     Ready      <none>   27m   v1.18.2

查看网卡,vip自动漂移到master02节点

1
2
3
$ ip a | grep 192.168
    inet 192.168.100.236/24 brd 192.168.100.255 scope global eth0
    inet 192.168.100.201/32 scope global eth0
版权声明:本文为博主原创文章,遵循 CC 4.0 BY-SA 版权协议,转载请附上原文出处链接和本声明。
本文链接:https://blog.csdn.net/zfw_666666/article/details/124446392

智能推荐

FX3/CX3 JLINK 调试_ezusbsuite_qsg.pdf-程序员宅基地

文章浏览阅读2.1k次。FX3 JLINK调试是一个有些麻烦的事情,经常有些莫名其妙的问题。 设置参见 c:\Program Files (x86)\Cypress\EZ-USB FX3 SDK\1.3\doc\firmware 下的 EzUsbSuite_UG.pdf 文档。 常见问题: 1.装了多个版本的jlink,使用了未注册或不适当的版本 选择一个正确的版本。JLinkARM_V408l,JLinkA_ezusbsuite_qsg.pdf

用openGL+QT简单实现二进制stl文件读取显示并通过鼠标旋转缩放_qopengl如何鼠标控制旋转-程序员宅基地

文章浏览阅读2.6k次。** 本文仅通过用openGL+QT简单实现二进制stl文件读取显示并通过鼠标旋转缩放, 是比较入门的级别,由于个人能力有限,新手级别,所以未能施加光影灯光等操作, 未能让显示的stl文件更加真实。****效果图:**1. main.cpp```cpp#include "widget.h"#include <QApplication>int main(int argc, char *argv[]){ QApplication a(argc, argv); _qopengl如何鼠标控制旋转

刘焕勇&王昊奋|ChatGPT对知识图谱的影响讨论实录-程序员宅基地

文章浏览阅读943次,点赞22次,收藏19次。以大规模预训练语言模型为基础的chatgpt成功出圈,在近几日已经给人工智能板块带来了多次涨停,这足够说明这一风口的到来。而作为曾经的风口“知识图谱”而言,如何找到其与chatgpt之间的区别,找好自身的定位显得尤为重要。形式化知识和参数化知识在表现形式上一直都是大家考虑的问题,两种技术都应该有自己的定位与价值所在。知识图谱构建往往是抽取式的,而且往往包含一系列知识冲突检测、消解过程,整个过程都能溯源。以这样的知识作为输入,能在相当程度上解决当前ChatGPT的事实谬误问题,并具有可解释性。

如何实现tomcat的热部署_tomcat热部署-程序员宅基地

文章浏览阅读1.3k次。最重要的一点,一定是degbug的方式启动,不然热部署不会生效,注意,注意!_tomcat热部署

用HTML5做一个个人网站,此文仅展示个人主页界面。内附源代码下载地址_个人主页源码-程序员宅基地

文章浏览阅读10w+次,点赞56次,收藏482次。html5 ,用css去修饰自己的个人主页代码如下:&lt;!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd"&gt;&lt;html xmlns="http://www.w3.org/1999/xh..._个人主页源码

程序员公开上班摸鱼神器!有了它,老板都不好意思打扰你!-程序员宅基地

文章浏览阅读201次。开发者(KaiFaX)面向全栈工程师的开发者专注于前端、Java/Python/Go/PHP的技术社区来源:开源最前线链接:https://github.com/svenstaro/gen..._程序员怎么上班摸鱼

随便推点

UG\NX二次开发 改变Block UI界面的尺寸_ug二次开发 调整 对话框大小-程序员宅基地

文章浏览阅读1.3k次。改变Block UI界面的尺寸_ug二次开发 调整 对话框大小

基于深度学习的股票预测(完整版,有代码)_基于深度学习的股票操纵识别研究python代码-程序员宅基地

文章浏览阅读1.3w次,点赞18次,收藏291次。基于深度学习的股票预测数据获取数据转换LSTM模型搭建训练模型预测结果数据获取采用tushare的数据接口(不知道tushare的筒子们自行百度一下,简而言之其免费提供各类金融数据 , 助力智能投资与创新型投资。)python可以直接使用pip安装tushare!pip install tushareCollecting tushare Downloading https://files.pythonhosted.org/packages/17/76/dc6784a1c07ec040e74_基于深度学习的股票操纵识别研究python代码

中科网威工业级防火墙通过电力行业测评_电力行业防火墙有哪些-程序员宅基地

文章浏览阅读2k次。【IT168 厂商动态】 近日,北京中科网威(NETPOWER)工业级防火墙通过了中国电力工业电力设备及仪表质量检验测试中心(厂站自动化及远动)测试,并成为中国首家通过电力协议访问控制专业测评的工业级防火墙生产厂商。   北京中科网威(NETPOWER)工业级防火墙专为工业及恶劣环境下的网络安全需求而设计,它采用了非X86的高可靠嵌入式处理器并采用无风扇设计,整机功耗不到22W,具备极_电力行业防火墙有哪些

第十三周 ——项目二 “二叉树排序树中查找的路径”-程序员宅基地

文章浏览阅读206次。/*烟台大学计算机学院 作者:董玉祥 完成日期: 2017 12 3 问题描述:二叉树排序树中查找的路径 */#include #include #define MaxSize 100typedef int KeyType; //定义关键字类型typedef char InfoType;typedef struct node

C语言基础 -- scanf函数的返回值及其应用_c语言ignoring return value-程序员宅基地

文章浏览阅读775次。当时老师一定会告诉你,这个一个"warning"的报警,可以不用管它,也确实如此。不过,这条报警信息我们至少可以知道一点,就是scanf函数调用完之后是有一个返回值的,下面我们就要对scanf返回值进行详细的讨论。并给出在编程时利用scanf的返回值可以实现的一些功能。_c语言ignoring return value

数字医疗时代的数据安全如何保障?_数字医疗服务保障方案-程序员宅基地

文章浏览阅读9.6k次。十四五规划下,数据安全成为国家、社会发展面临的重要议题,《数据安全法》《个人信息保护法》《关键信息基础设施安全保护条例》已陆续施行。如何做好“数据安全建设”是数字时代的必答题。_数字医疗服务保障方案

推荐文章

热门文章

相关标签