特征向量与PCA:降维技术的原理和实践-程序员宅基地

1.背景介绍

随着数据量的不断增长,数据处理和分析的复杂性也随之增加。降维技术成为了处理高维数据的重要手段,其中特征向量和PCA(主成分分析)是常见的降维方法。本文将详细介绍特征向量与PCA的原理、算法和实践,帮助读者更好地理解和应用这些方法。

1.1 高维数据的挑战

高维数据具有以下特点:

  • 数据点数量较少,特征数量较多。
  • 特征之间存在冗余和相关性。
  • 数据分布和结构复杂,难以直观地理解和可视化。

这些特点使得高维数据处理和分析变得非常困难,导致以下问题:

  • 计算效率低,存储空间需求大。
  • 算法性能差,预测准确度低。
  • 可视化和解释困难,难以提取有意义的信息。

因此,降维技术成为了处理高维数据的关键技术之一。

1.2 降维技术的需求和目标

降维技术的需求和目标包括:

  • 减少数据的维度,降低计算和存储成本。
  • 去除冗余和相关特征,提高算法性能。
  • 简化数据分布和结构,提高可视化和解释性。
  • 保留数据的主要信息和结构,避免信息损失。

降维技术应该满足以下要求:

  • 保持数据的核心特征和结构。
  • 最小化信息损失。
  • 尽可能地保持数据的原始关系。

1.3 降维技术的分类

降维技术可以分为以下几类:

  • 基于信息论的降维:如信息瓶颈、信息纬度减少等方法。
  • 基于簇和聚类的降维:如KPCA(Kernel PCA)、LLE(Locally Linear Embedding)等方法。
  • 基于线性代数的降维:如PCA(主成分分析)、LDA(线性判别分析)等方法。
  • 基于非线性映射的降维:如Isomap、MDS(多维缩放)等方法。
  • 基于机器学习的降维:如梯度下降、支持向量机等方法。

本文主要介绍特征向量与PCA(主成分分析)的原理和实践,这些方法属于基于线性代数的降维技术。

2.核心概念与联系

2.1 特征向量

特征向量(Feature Vector)是指一个向量,用于表示一个数据实例或对象的特征。特征向量中的元素对应于数据实例的特征值,可以用于计算和分析。

特征向量的主要特点:

  • 有限维:特征向量是一个有限维的向量,可以用于表示有限个特征。
  • 数值化:特征向量的元素是数值型的,可以用于计算和分析。
  • 线性组合:特征向量可以通过线性组合得到,即一个特征向量可以通过其他特征向量的线性组合得到。

2.2 PCA(主成分分析)

PCA(主成分分析)是一种基于线性代数的降维技术,其目标是找到数据中的主要信息和结构,将其表示为一组线性无关的主成分。主成分是数据中方差最大的线性组合,可以用于降低数据的维度,同时最大限度地保留数据的核心特征和结构。

PCA的主要特点:

  • 线性组合:PCA通过线性组合原始特征得到主成分,即主成分是原始特征的线性组合。
  • 最大化方差:PCA的目标是找到方差最大的线性组合,即主成分是原始特征的方差最大的线性组合。
  • 降维:PCA的目的是降低数据的维度,同时保留数据的主要信息和结构。

2.3 特征向量与PCA的联系

特征向量和PCA在降维过程中有一定的联系,可以互相转换。具体来说,PCA可以看作是对特征向量的线性组合和重新排序的过程。PCA首先找到方差最大的线性组合,即主成分,然后将这些主成分重新排序,得到一个新的特征向量。这个新的特征向量可以用于表示数据的主要信息和结构,同时降低了数据的维度。

3.核心算法原理和具体操作步骤以及数学模型公式详细讲解

3.1 PCA算法原理

PCA算法的原理是基于线性代数和统计学的原理,包括:

  • 线性代数:PCA通过线性组合原始特征得到主成分。
  • 统计学:PCA通过最大化方差来找到原始特征的主要信息和结构。

PCA算法的核心思路是:

  1. 计算原始特征的协方差矩阵。
  2. 计算协方差矩阵的特征值和特征向量。
  3. 按照特征值的大小对特征向量进行排序。
  4. 选取部分特征向量,构建降维后的特征矩阵。

3.2 PCA算法具体操作步骤

PCA算法的具体操作步骤如下:

  1. 标准化原始数据:将原始数据进行标准化处理,使得各个特征的均值为0,方差为1。
  2. 计算协方差矩阵:计算原始特征的协方差矩阵。
  3. 计算特征值和特征向量:计算协方差矩阵的特征值和特征向量。
  4. 按照特征值的大小对特征向量进行排序:将特征向量按照特征值的大小从大到小排序。
  5. 选取部分特征向量:根据需要降低的维度数选取部分特征向量,构建降维后的特征矩阵。

3.3 数学模型公式详细讲解

3.3.1 协方差矩阵

协方差矩阵是PCA算法的核心数据结构,用于描述原始特征之间的关系。协方差矩阵的大小为原始特征的数量,元素为协方差。协方差是一个量度,用于描述两个随机变量之间的线性关系。协方差的计算公式为:

$$ cov(X,Y) = E[(X - \muX)(Y - \muY)] $$

其中,$X$ 和 $Y$ 是随机变量,$\muX$ 和 $\muY$ 是 $X$ 和 $Y$ 的均值。

3.3.2 特征值和特征向量

特征值和特征向量是协方差矩阵的主要特征,用于描述原始特征之间的关系和主要信息。特征值是协方差矩阵的特征值,特征向量是协方差矩阵的特征向量。

要计算协方差矩阵的特征值和特征向量,可以使用特征分解法(Eigenvalue Decomposition)。特征分解法的公式为:

$$ \Lambda = PDP^T $$

其中,$\Lambda$ 是特征值矩阵,$P$ 是特征向量矩阵,$D$ 是对角线矩阵,其对角线元素为特征值。

3.3.3 降维

降维是PCA算法的主要目标,可以通过选取部分特征向量来实现。降维后的特征矩阵可以通过以下公式得到:

$$ X{reduced} = XrP_r $$

其中,$X{reduced}$ 是降维后的特征矩阵,$Xr$ 是原始特征矩阵,$P_r$ 是选取的特征向量矩阵。

4.具体代码实例和详细解释说明

4.1 导入库和数据准备

首先,我们需要导入相关库和准备数据。这里使用Python的NumPy和Scikit-learn库来实现PCA算法。

```python import numpy as np from sklearn.decomposition import PCA from sklearn.preprocessing import StandardScaler from sklearn.datasets import load_iris

加载鸢尾花数据集

iris = load_iris() X = iris.data y = iris.target ```

4.2 数据标准化

接下来,我们需要对原始数据进行标准化处理,使得各个特征的均值为0,方差为1。

```python

数据标准化

scaler = StandardScaler() Xstd = scaler.fittransform(X) ```

4.3 PCA算法实现

现在,我们可以使用Scikit-learn库中的PCA类来实现PCA算法。

```python

PCA算法实现

pca = PCA(ncomponents=2) # 选取2个主成分 Xpca = pca.fittransform(Xstd) ```

4.4 结果分析

最后,我们可以对结果进行分析,查看降维后的特征矩阵和原始数据的关系。

```python

结果分析

print("降维后的特征矩阵:\n", X_pca) print("原始数据的目标变量:\n", y) ```

5.未来发展趋势与挑战

5.1 未来发展趋势

未来的发展趋势包括:

  • 多模态数据的融合和处理:多模态数据(如图像、文本、音频等)的处理和融合将成为降维技术的重要应用领域。
  • 深度学习与降维的结合:深度学习和降维技术的结合将为降维技术提供更强大的表达能力和更高的效果。
  • 自适应和在线降维:随着数据量的增加,在线和自适应的降维技术将成为重要的研究方向。
  • 融合人工智能和机器学习:人工智能和机器学习的发展将推动降维技术的创新和进步。

5.2 挑战

挑战包括:

  • 高维数据的挑战:高维数据的处理和分析仍然是降维技术的主要挑战之一。
  • 非线性数据的处理:非线性数据的处理和分析仍然是降维技术的一个难点。
  • 解释性和可视化:降维技术的结果解释性和可视化仍然是一个难题。
  • 算法效率和计算成本:降维技术的算法效率和计算成本仍然是一个问题。

6.附录常见问题与解答

6.1 常见问题

  1. PCA和LDA的区别是什么?
  2. 如何选择PCA的维度?
  3. PCA和SVD(奇异值分解)的关系是什么?
  4. 降维后的数据是否可以直接用于机器学习模型?

6.2 解答

  1. PCA和LDA的区别在于:PCA是一种基于线性代数的降维技术,其目标是找到原始特征的方差最大的线性组合;LDA是一种基于线性判别分析的降维技术,其目标是找到原始特征的判别信息最大的线性组合。
  2. 选择PCA的维度时,可以根据解释性、准确性和计算成本进行权衡。一种方法是使用交叉验证,根据验证集上的表现来选择最佳的维度数。
  3. PCA和SVD的关系是:PCA可以看作是SVD的一个特例。SVD是一种矩阵分解技术,可以用于分解矩阵并找到其主要特征。PCA是在SVD的基础上,将矩阵分解后的特征值和特征向量用于降维的一个应用。
  4. 降维后的数据可以直接用于机器学习模型,但是需要注意的是,降维后的数据可能会导致部分信息损失,因此需要在降维后进行适当的调整和优化,以确保模型的准确性和效果。

27. 特征向量与PCA:降维技术的原理和实践

1.背景介绍

随着数据量的不断增长,数据处理和分析的复杂性也随之增加。降维技术成为了处理高维数据的重要手段,其中特征向量和PCA(主成分分析)是常见的降维方法。本文将详细介绍特征向量与PCA的原理、算法和实践,帮助读者更好地理解和应用这些方法。

1.1 高维数据的挑战

高维数据具有以下特点:

  • 数据点数量较少,特征数量较多。
  • 特征之间存在冗余和相关性。
  • 数据分布和结构复杂,难以直观地理解和可视化。

这些特点使得高维数据处理和分析变得非常困难,导致以下问题:

  • 计算效率低,存储空间需求大。
  • 算法性能差,预测准确度低。
  • 可视化和解释困难,难以提取有意义的信息。

因此,降维技术成为了处理高维数据的关键技术之一。

1.2 降维技术的需求和目标

降维技术的需求和目标包括:

  • 减少数据的维度,降低计算和存储成本。
  • 去除冗余和相关特征,提高算法性能。
  • 简化数据分布和结构,提高可视化和解释性。
  • 保留数据的主要信息和结构,避免信息损失。

降维技术应该满足以下要求:

  • 保持数据的核心特征和结构。
  • 最小化信息损失。
  • 尽可能地保持数据的原始关系。

1.3 降维技术的分类

降维技术可以分为以下几类:

  • 基于信息论的降维:如信息瓶颈、信息纬度减少等方法。
  • 基于簇和聚类的降维:如KPCA(Kernel PCA)、LLE(Locally Linear Embedding)等方法。
  • 基于线性代数的降维:如PCA(主成分分析)、LDA(线性判别分析)等方法。
  • 基于非线性映射的降维:如Isomap、MDS(多维缩放)等方法。
  • 基于机器学习的降维:如梯度下降、支持向量机等方法。

本文主要介绍特征向量与PCA(主成分分析)的原理和实践,这些方法属于基于线性代数的降维技术。

2.核心概念与联系

2.1 特征向量

特征向量(Feature Vector)是指一个向量,用于表示一个数据实例或对象的特征。特征向量的元素对应于数据实例的特征值,可以用于计算和分析。

特征向量的主要特点:

  • 有限维:特征向量是一个有限维的向量,可以用于表示有限个特征。
  • 数值化:特征向量的元素是数值型的,可以用于计算和分析。
  • 线性组合:特征向量可以通过线性组合得到,即一个特征向量可以通过其他特征向量的线性组合得到。

2.2 PCA(主成分分析)

PCA(主成分分析)是一种基于线性代数的降维技术,其目标是找到数据中的主要信息和结构,将其表示为一组线性无关的主成分。主成分是数据中方差最大的线性组合,可以用于降低数据的维度,同时最大限度地保留数据的核心特征和结构。

PCA的主要特点:

  • 线性组合:PCA通过线性组合原始特征得到主成分,即主成分是原始特征的线性组合。
  • 最大化方差:PCA的目标是找到方差最大的线性组合,即主成分是原始特征的方差最大的线性组合。
  • 降维:PCA的目的是降低数据的维度,同时保留数据的主要信息和结构。

2.3 特征向量与PCA的联系

特征向量和PCA在降维过程中有一定的联系,可以互相转换。具体来说,PCA可以看作是对特征向量的线性组合和重新排序的过程。PCA首先找到方差最大的线性组合,即主成分,然后将这些主成分重新排序,得到一个新的特征向量。这个新的特征向量可以用于表示数据的主要信息和结构,同时降低了数据的维度。

3.核心算法原理和具体操作步骤以及数学模型公式详细讲解

3.1 PCA算法原理

PCA算法的原理是基于线性代数和统计学的原理,包括:

  • 线性代数:PCA通过线性组合原始特征得到主成分。
  • 统计学:PCA通过最大化方差来找到原始特征的主要信息和结构。

PCA算法的核心思路是:

  1. 计算原始特征的协方差矩阵。
  2. 计算协方差矩阵的特征值和特征向量。
  3. 按照特征值的大小对特征向量进行排序。
  4. 选取部分特征向量,构建降维后的特征矩阵。

3.2 PCA算法具体操作步骤

PCA算法的具体操作步骤如下:

  1. 标准化原始数据:将原始数据进行标准化处理,使得各个特征的均值为0,方差为1。
  2. 计算协方差矩阵:计算原始特征的协方差矩阵。
  3. 计算特征值和特征向量:计算协方差矩阵的特征值和特征向量。
  4. 按照特征值的大小对特征向量进行排序:将特征向量按照特征值的大小从大到小排序。
  5. 选取部分特征向量:根据需要降低的维度数选取部分特征向量,构建降维后的特征矩阵。

3.3 数学模型公式详细讲解

3.3.1 协方差矩阵

协方差矩阵是PCA算法的主要数据结构,用于描述原始特征之间的关系。协方差矩阵的大小为原始特征的数量,元素为协方差。协方差是一个量度,用于描述两个随机变量之间的线性关系。协方差的计算公式为:

$$ cov(X,Y) = E[(X - \muX)(Y - \muY)] $$

其中,$X$ 和 $Y$ 是随机变量,$\muX$ 和 $\muY$ 是 $X$ 和 $Y$ 的均值。

3.3.2 特征值和特征向量

特征值和特征向量是协方差矩阵的主要特征,用于描述原始特征之间的关系和主要信息。特征值是协方差矩阵的特征值,特征向量是协方差矩阵的特征向量。

要计算协方差矩阵的特征值和特征向量,可以使用特征分解法(Eigenvalue Decomposition)。特征分解法的公式为:

$$ \Lambda = PDP^T $$

其中,$\Lambda$ 是特征值矩阵,$P$ 是特征向量矩阵,$D$ 是对角线矩阵,其对角线元素为特征值。

3.3.3 降维

降维是PCA算法的主要目标,可以通过选取部分特征向量来实现。降维后的特征矩阵可以通过以下公式得到:

$$ X{reduced} = XrP_r $$

其中,$X{reduced}$ 是降维后的特征矩阵,$Xr$ 是原始特征矩阵,$P_r$ 是选取的特征向量矩阵。

4.具体代码实例和详细解释说明

4.1 导入库和数据准备

首先,我们需要导入相关库和准备数据。这里使用Python的NumPy和Scikit-learn库来实现PCA算法。

```python import numpy as np from sklearn.decomposition import PCA from sklearn.preprocessing import StandardScaler from sklearn.datasets import load_iris

加载鸢尾花数据集

iris = load_iris() X = iris.data y = iris.target ```

4.2 数据标准化

接下来,我们需要对原始数据进行标准化处理,使得各个特征的均值为0,方差为1。

```python

数据标准化

scaler = StandardScaler() Xstd = scaler.fittransform(X) ```

4.3 PCA算法实现

现在,我们可以使用Scikit-learn库中的PCA类来实现PCA算法。

```python

PCA算法实现

pca = PCA(ncomponents=2) # 选取2个主成分 Xpca = pca.fittransform(Xstd) ```

4.4 结果分析

最后,我们可以对结果进行分析,查看降维后的特征矩阵和原始数据的关系。

```python

结果分析

print("降维后的特征矩阵:\n", X_pca) print("原始数据的目标变量:\n", y) ```

5.未来发展趋势与挑战

5.1 未来发展趋势

未来的发展趋势包括:

  • 多模态数据的融合和处理:多模态数据(如图像、文本、音频等)的处理和融合将成为降维技术的重要应用领域。
  • 深度学习与降维的结合:深度学习和降维技术的结合将为降维技术提供更强大的表达能力和更高的效果。
  • 自适应和在线降维:随着数据量的增加,在线和自适应的降维技术将成为重要的研究方向。
  • 融合人工智能和机器学习:人工智能和机器学习的发展将推动降维技术的创新和进步。

5.2 挑战

挑战包括:

  • 高维数据的挑战:高维数据的处理和分析仍然是降维技术的主要挑战之一。
  • 非线性数据的处理和分析:非线性数据的处理和分析仍然是降维技术的一个难点。
  • 解释性和可视化:降维后的数据是否可以直接用于机器学习模型?
  • 算法效率和计算成本:降维技术的算法效率和计算成本仍然是一个问题。

6.附录常见问题与解答

6.1 常见问题

  1. PCA和LDA的区别是什么?
  2. 如何选择PCA的维度?
  3. PCA和SVD(奇异值分解)的关系是什么?
  4. 降维后的数据是否可以直接用于机器学习模型?

6.2 解答

  1. PCA和LDA的区别在于:PCA是一种基于线性代数的降维技术,其目标是找到原始特征的方差最大的线性组合;LDA是一种基于线性判别分析的降维技术,其目标是找到原始特征的判别信息最大的线性组合。
  2. 选择PCA的维度时,可以根据解释性、准确性和计算成本进行权衡。一种方法是使用交叉验证,根据验证集上的表现来选择最佳的维度数。
  3. PCA和SVD的关系是:PCA可以看作是SVD的一个特例。SVD是一种矩阵分解技术,可以用于分解矩阵并找到其主要特征。PCA是在SVD的基础上,将矩阵分解后的特征值和特征向量用于降维的一个应用。
  4. 降维后的数据可以直接用于机器学习模型,但是需要在降维后进行适当的调整和优化,以确保模型的准确性和效果。

27. 特征向量与PCA:降维技术的原理和实践

1.背景介绍

随着数据量的不断增长,数据处理和分析的复杂性也随之增加。降维技术成为了处理高维数据的重要手段,其中特征向量和PCA(主成分分析)是常见的降维方法。本文将详细介绍特征向量与PCA的原理、算法和实践,帮助读者更好地理解和应用这些方法。

1.1 高维数据的挑战

高维数据具有以下特点:

  • 数据点数量较少,特征数量较多。
  • 特征之间存在冗余和相关性。
  • 数据分布和结构复杂,难以直观地理解和可视化。

这些特点使得高维数据处理和分析变得非常困难,导致以下问题:

  • 计算效率低,存储空间需求大。
  • 算法性能差,预测准确度低。
  • 可视化和解释困难,难以提取有意义的信息。

因此,降维技术成为了处理高维数据的关键技术之一。

1.2 降维技术的需求和目标

降维技术的需求和目标包括:

  • 减少数据的维度,降低计算和存储成本。
  • 去除冗余和相关特征,提高算法性能。
  • 简化数据分布和结构,提高可视化和解释性。
  • 保留数据的主要信息和结构,避免信息损失。

降维技术应该满足以下要求:

  • 保持数据的核心特征和结构。
  • 最小化信息损失。
  • 尽可能地保持数据的原始关系。

1.3 降维技术的分

版权声明:本文为博主原创文章,遵循 CC 4.0 BY-SA 版权协议,转载请附上原文出处链接和本声明。
本文链接:https://blog.csdn.net/universsky2015/article/details/137288805

智能推荐

深度学习04—反向传播算法(用于参数更新、troch实现)_反向传播实例及代码-程序员宅基地

文章浏览阅读4.6k次,点赞11次,收藏57次。(1)反向传播:该方法主要是应用链式法则的方法,求loss关于w和b的导数;(2)关于如下步骤中,l.backward()会将前向的各部梯度存入,而红色的两个代码会形成“计算图”;(3)其中:w是Tensor(张量类型),Tensor中包含data和grad,data和grad也是Tensor。grad初始为None,调用l.backward()方法后w.grad为Tensor,故更新w.data时需使用w.grad.data。_反向传播实例及代码

MongoDB复杂分组聚合查询_mongodb分组查询-程序员宅基地

文章浏览阅读3.7k次,点赞4次,收藏16次。目录1 聚合查询1.1 MongoDB的聚合查询2 聚合管道方法2.1 聚合流程2.1.1 详细流程2.2 聚合语法2.2.1 参数说明2.2.2 注意事项2.3 常用聚合管道2.3.1 与mysql聚合类比3 使用示例3.1 统计所有数据3.2 对所有城市人数求合3.3 对城市缩写相同的城市人数求合3.4 state重复的城市个数3.5 state重复个数大于100的城市4 MapReduce4.1 什么是MapReduce4.1.1 执行阶段4.1.2 语法_mongodb分组查询

云服务器可以改系统吗,云服务器可以改系统吗?-程序员宅基地

文章浏览阅读788次。云服务器可以改系统吗?腾佑小编给出的答案是:可以的,云服务器可以改系统,不过更换系统是一个高风险操作。在更换系统盘之前,务必认真阅读服务商给出的注意事项。云服务器改系统的风险有:1.原系统盘的会被释放,建议提前创建快照备份数据。2.更换系统盘需要停止实例,因此会中断网站的业务。3.更换完成后,需要在新的系统盘中重新部署业务运行环境,有可能会对业务造成长时间的中断。更换系统盘相当于重新为云服务器实例...

Xilinx zynqmp USB开发-程序员宅基地

文章浏览阅读6.1k次,点赞4次,收藏35次。参考Linux USB DWC3 Host/Peripheral DriverZynq Ultrascale MPSOC Linux USB device driverU-Boot USB DriverZynq UltraScale+ MPSoC USB 3.0 Mass Storage Device Class DesignZynq UltraScale+ MPSoC USB 3.0...

离散余弦变换(DCT)的来龙去脉_dcd余弦变化-程序员宅基地

文章浏览阅读5.8w次,点赞40次,收藏238次。本文主要介绍离散余弦变换(DCT),从图像的二维离散变换入手,引出变换核的可分性与对称性导出DCT,并给出实现代码。_dcd余弦变化

使用python的requests 发送multipart/form-data 请求-程序员宅基地

文章浏览阅读3.9w次,点赞5次,收藏23次。发送post请求 1 r = requests.post("http://pythontab.com/postTest", data = {"key":"value"}) 以上得知,post请求参数是以data关键字参数来传递的。现在的data参数传递的是字典,我们也可以传递一个json格式的数据,如下: 1 2 3 ...

随便推点

支付宝对账单下载Java正式商户调用-程序员宅基地

文章浏览阅读204次。package code;import java.io.File;import java.io.FileOutputStream;import java.io.IOException;import java.io.InputStream;import java.net.HttpURLConnection;import java.net.MalformedURLExcep..._java商家 alipay 账单拉取

学java对笔记本配置有何要求_java程序员应该配置什么样的笔记本-程序员宅基地

文章浏览阅读2.6k次。入门JAVA程序员需要配置什么样的笔记本?一般java程序员使用的笔记本配置有多高,怎么样才能让java程序员安心的工作!要求:1.可以运行MyEclipse,Tomcat,MySQL,oracle,flex等java web编程的软件。可能还会涉及到安卓开发。2.偶尔看看电影什么的。3.内存最好大一点,不然运行代码怕占用内存太高。5.屏幕最好能稍微大一点,看电影,敲代码会更舒服一点。6.预算在5..._java程序员笔记本配置

Python模块:基本概念、2种导入方法(import与from...import)和使用-程序员宅基地

文章浏览阅读1w次,点赞37次,收藏221次。模块是python程序架构的一个核心概念。每一个以扩展名py结尾的python源代码文件都是一个模块,模块名同样也是一个标识符,需要符合标识符的命名规则,在模块中定义的全局变量、函数、类都是提供给外界直接使用的工具,模块就好比工具包,要想使用这个工具包中的工具,就需要先的导入这个模。

100天精通Python(数据分析篇)——第70天:Pandas常用排序、排名方法(sort_index、sort_values、rank)_pandas rank sort_value-程序员宅基地

文章浏览阅读1.3w次,点赞69次,收藏69次。一、按索引排序:sort_index() 1. Series类型排序 1)升序 2)降序 2. DataFrame类型排序 1)按行索引排序 2)按列索引排序二、按值排序:sort_values() 1. Series类型排序 1)升序 2)降序 2. DataFrame类型排序 1)单列排序 2)多列排序 3)排序算法 _pandas rank sort_value

Java基础面试题(2022最新版汇总)_白大锅,java基础面试题(2022最新版汇总)-程序员宅基地

文章浏览阅读10w+次,点赞597次,收藏3.5k次。史上最全、最新、最详细的Java基础面试题汇总_白大锅,java基础面试题(2022最新版汇总)

OPC UA Java 开发笔记(三):open62541建立基础服务器_java open62541-程序员宅基地

文章浏览阅读3.9k次,点赞2次,收藏9次。前两天一直在搞open62541,因为milo库的server sdk没有办法根据xml生成结点文件,于是准备用open62541来搭建服务器,milo结合Spring Boot来构件客户端。网络上大多是建立一个open62541.h的头文件,还有就是open62541.c的执行文件,但是新版好像并不是这样的。然后很多教程都是讲的linux,但是初学者用linux的还是比较少,所我写了这一篇帮..._java open62541

推荐文章

热门文章

相关标签