图算法——求最短路径(Dijkstra算法)-程序员宅基地

技术标签: 算法  图论  数据结构  

       目录

一、什么是最短路径

二、迪杰斯特拉(Dijkstra)算法

 三、应用Dijkstra算法

(1) Dijkstra算法函数分析


        求图的最短路径在实际生活中有许多应用,比如说在你在一个景区的某个景点,参观完后,要怎么走最少的路程到你想参观的下个景点,这就利用到了求图最短路径的算法。求图的最短路径有很多算法,这里介绍一种迪杰斯特拉(Dijkstra)算法来求图的最短路径。

        在介绍算法前,需要掌握一点图的基本知识,比如说什么是路径,什么是路径长度等。如果对这些不了解的话,建议先了解一下。

        这是我写的一篇博客,对图的一些基本知识的简介——图的一些基本知识

一、什么是最短路径

        在网图和非网图中,最短路径的含义是不同的。由于非网图没有边上的权值,所谓最短路径,其实指的就是两个顶点之间经过的边数最少的路劲(即可以理解为把每一条边的权值看作是1)。

        对于网图来说,最短路径,是指两顶点之间经过的边上的权值之和最少的路径,并且我们称路径上的第一个顶点是源点,最后一个顶点是终点。

        求带权有向图G的最短路径问题一般可分为两类:一是单源最短路径,即求图中某一个顶点到其它顶点的最短路径,可以通过经典的 Dijkstra(迪杰斯特拉)算法求解(即是我要介绍的算法);二是求每对顶点间的最短路径,可通过Floyd(弗洛伊德)算法来求解。

二、迪杰斯特拉(Dijkstra)算法

        Dijkstra算法算法思路是设置一个集合S记录已求得的最短路径的顶点,初始时把源点V0(图中的某个顶点)放入S,集合S每并入一个新顶点 V_{i},都要修改源点V0到集合 V-S 中顶点当前的最短路径长度值(这里可能大家会很懵,但等会我会用一个例子来解说)。

        在构造过程中需要两个辅助数组:

  • dist[ ] :记录从源点V0到其他各顶点当前的最短路径长度,它的初态为:若从 V0 到 V_{i} 有直接路径(即V0 和 V_{i} 邻接),则dist[ i ]为这两个顶点边上的权值;否则置 dist[ i ] 为 ∞。
  • path[ ]:path[ i ]表示从源点到顶点 i 之间的最短路径的前驱结点。在算法结束时,可以根据其值追溯到源点 V0 到 V_{i} 的最短路径。

        假设从顶点 V0 = 0出发,邻接矩阵Edge表示带权无向图,Edge[i][j]表示无向边 (i, j)的权值,若不存在无向边(i, j),则Edge[i][]为 ∞。

        Dijkstra算法步骤如下:

1)初始化:集合S初始化为{0},dist[ ] 的初始值dist[i] = Edge[0][i],path[ ]的初始值path[i] = -1,i = 1,2,...,n-1。

2)从顶点集合 V - S中选出V_{j},满足dist[j] = Min{dist[i] | V_{i} \in V - S},V_{j}就是当前求的一条从 V0 出发的最短路径的终点,令S = S\cup{j}。

3)修改从V0出发到集合 V - S上任一顶点 V_{k} 可达的最短路径长度:若

      dist[j] + Edge[j][k] < dist[k],则更新 dist[k] = dist[j] + Edge[j][k],并修改path[k] = j(即修改顶点V_{k}的最短路径的前驱结点 )  。

4)重复 2)~  3)操作共 n-1 次,直到所有的顶点都包含在 S 中。

解释下步骤3),每当一个顶点加入S后,可能需要修改源点V0 到集合 V-S中的可达顶点当前的最短路径长度。下面举一个例子。如下图所示,源点为V0,初始时S = {V0},dist[1] = 6, dist[2] = 3,当V_{2}并入集合S后,dist[1] 需要更新为 5(其比6小,即说明两点之间不是直线最短,要根据两点之间路径的权值之和来看)。

下面来讲解利用Dijkstra算法来求下图中的顶点 0 出发至其余顶点的最短路径的过程。

初始化:集合S初始化为{V_{0}},V_{0}可达V_{1}和V_{2},其余顶点不可达,因此dist[]数组和path[]数组的设置如下:

第一轮:选出最小dist[2],将顶点 V_{2} 并入集合S,此时已找到 V_{0} 到 V_{2} 的最短路径,S = {V_{0},V_{2}}。当 V_{2} 加入到S后,从V_{0}到集合V-S中可到达顶点的最短路径长度可能会产生变化。因此需要更新dist[]数组。V_{2}可达V_{1},因V_{0} -> V_{2} -> V_{1}的距离 5 比 dist[1] = 6小,更新dist[1] = 5,并修改 path[1] = 2(即V_{1}的最短路径的前驱为V_{2});V_{2} 可达 V_{3},V^{0} -> V_{2} - > V_{3}的距离 8 比 dist[3] = ∞ 小,更新dist[3] = 8,path[3] = 2;V_{2}可达V_{5},V^{0} -> V_{2} -> V_{5} 的距离 10 小于 dist[5] = ∞,更新dist[5] = 10,path[5] = 2。V_{2}再无到达其余的顶点的路径,结束这一轮,此时dist[]数组和path[]数组如下:

 第二轮:选出最小值dist[1],将顶点 V_{1} 并入集合S,此时已找到 V_{0} 到 V_{1} 的最短路径,S = {V_{0},V_{2},V_{1}}。然后更新dist[]数组和path[]数组,V_{1}可达V_{3},V_{0} -> V_{2} -> V_{1} -> V_{3} 的距离 6 小于 dist [3] = 8 ,更新 dist[3] = 6,path[3] = 1;V_{1} 可达 V_{2},但V_{2}已经在集合S中,故不进行操作;V_{1} 可达 V_{4}, V_{0} -> V_{2} -> V_{1} -> V_{4}的距离 9 小于 dist[4] = ∞,更新dist[4] = 9,path[4] = 1。V_{1} 已无到达其余顶点的路径,结束此轮,此时dist[]数组和path[]数组如下:

第三轮: 选出最小值 dist[3],将顶点 V_{3} 并入集合 S,此时已找到 V_{0} 到 V_{3} 的最短路径,S = { V_{0},V_{2},V_{1},V_{3}}。接着更新dist[]数组和path[]数组,V_{3} 可到达 V_{4}, V_{0} -> V_{2} -> V_{1} -> V_{3} -> V_{4} 的距离为 9 等于 dist[4] = 9,我们不做更新;V_{3} 可到达 V_{5},  V_{0} -> V_{2} -> V_{1} -> V_{3} -> V_{5} 的距离为 12 大于 dist[5] = 10,不做更新。 V_{3} 再无达到其余顶点的路径,结束此轮,此时dist[]数组和path[]数组如下:

第四轮:选出最小值 dist[4],将顶点 V_{4} 并入集合 S,此时已找到 V_{0} 到 V_{4}的最短路径,S = { V_{0},V_{2},V_{1},V_{3},V_{4}}。继续更新dist[]数组和path[]数组,V_{4}可到 V_{5}, V_{0} -> V_{2} -> V_{1} -> V_{4} -> V_{5}的距离 11 小于 dist[5] = 10,故不进行更新操作;V_{4} 可到 V_{6}, V_{0} -> V_{2} -> V_{1} -> V_{4} -> V_{6}的距离 11 小于 dist[6] = ∞,更新 dist[6] = 11,path[6] = 4。V_{4} 再无达到其余顶点的路径,结束此轮,此时dist[]数组和path[]数组如下:

第五轮: 选出最小值 dist[5],将顶点 V_{5} 并入集合S,此时已找到 V_{0} 到 V_{5}的最短路径,S =  { V_{0},V_{2},V_{1},V_{3},V_{4},V_{5}}。然后ist[]数组和path[]数组,V_{}_{5} 可到 V_{6}, V^{0} -> V_{2} -> V_{5} -> V_{6} 的最短路径 13 大于 dist[6],故不进行更新操作。V_{6} 再无达到其余顶点的路径,结束此轮,此时dist[]数组和path[]数组如下: 

 第六轮:选出最小值 dist[6],将顶点 V_{6} 并入集合,此时全部顶点都已包含在S中,结束算法。

 整个算法每一轮的结果如下: 

总结:Dijkstra算法就是最开始选离源点V_{0}最近的点,然后选好点后,再从选好点的看其邻接点的距离dist[]是否减小,减小就修改dist[]和path[];否则就不进行修改操作。Dijkstra算法基于贪心策略,用邻接矩阵表示图时,来使用Dijkstra算法,其时间复杂度为O(n*n)。当边上带有负权值时,Dijkstra算法并不适用。

使用dist[]数组和path[]数组,求最短路径,这里介绍一个例子,其它顶点依次类推。

V_{0}到V_{6}的最短路径,先利用dist[6] = 11 得出 V_{0}到V_{6}的距离,然后利用path[]得出路径。path[6] = 4,顶点V_{6}的前驱顶点是 V_{4},再由 path[4] = 1,表示 V_{4} 的前驱是 V_{1} , path[1] = 2,表示 V_{1} 的前驱是 V_{2},path[2] = -1,结束。最后可以得到 V_{0} 到 V_{6} 的最短路径为 V_{6} <- V_{4} <- V_{1} <- V_{2} <- V_{0},即 V_{0} -> V_{2} -> V_{1} -> V_{4} -> V_{6} 。

 三、应用Dijkstra算法

        理解上面的Dijkstra算法求最短路径的过程,那么下面的应用Dijkstra算法的程序就很容易理解。此程序分三大块,在程序末尾我会来粗略介绍下。

使用此程序需输入以下内容创建图G:

第一步:7 12

第二步:0123456

第三步:依次输入下面的内容,输入完一行就按下换行键

0 1 6

0 2 3

1 2 2

1 3 1

1 4 4

2 3 5

2 5 7

3 4 3

3 5 6

4 5 2

4 6 2

5 6 3

        上面输入完后,即可创建下面的图G: 

/*
使用此程序需输入以下内容创建图G:
第一步:7 12
第二步:0123456
第三步:依次输入下面的内容,输入完一行就按下换行键
0 1 6
0 2 3
1 2 2
1 3 1
1 4 4
2 3 5
2 5 7
3 4 3
3 5 6
4 5 2
4 6 2
5 6 3
*/
#include <stdio.h>
#include <stdbool.h>
#include <stdlib.h>

#define MaxVerterNum 100		// 顶点数目的最大值
#define INFINITY 65535			// 用65535代表 ∞

typedef char VertexType;		// 顶点的数据类型
typedef int EdgeType;			// 带权图中边上权值的数据类型

/* 邻接矩阵的存储结构 */
typedef struct
{
	VertexType Vexs[MaxVerterNum];					// 顶点表
	EdgeType Edge[MaxVerterNum][MaxVerterNum];		// 邻接矩阵
	int vexNum, arcNum;								// 图当前顶点数和弧数
}MGraph;

/*清除缓冲区的换行符*/
void Clean(void)
{
	while (getchar() != '\n')
		continue;
}

/* 建立无向网图的邻接矩阵表示 */
void CreateMGraph(MGraph* G);

/* 迪杰斯特拉(Dijkstra) 算法*/
typedef int Patharc[MaxVerterNum];			// 用于存储最短路径下标的数组,从源点Vi到顶点Vj之间的最短路径的前驱
typedef int ShortPathTable[MaxVerterNum];	// 用于存储到各点最短路径的权值和
void ShortestPath_Dijkstra(MGraph G, int v0, Patharc path, ShortPathTable D);

/* 输出最短路径 */
/* Dijkstra算法的结果输出 */
void Show_ShortestPath_Dijkstra(Patharc path, ShortPathTable dist, MGraph G, int v0);

int main(void)
{
	MGraph G;
	Patharc path;
	ShortPathTable dist;
	CreateMGraph(&G);
	for (int i = 0; i < G.vexNum; i++) // 输出各点到各点的最短路径序列,不再局限于一个顶点
	{
		ShortestPath_Dijkstra(G, i, path, dist);
		Show_ShortestPath_Dijkstra(path, dist, G, i);
	}
	return 0;
}

/* 建立无向网图的邻接矩阵表示 */
void CreateMGraph(MGraph* G)
{
	int i, j, k, w;
	printf("请输入顶点数和边数:");
	scanf("%d %d", &G->vexNum, &G->arcNum);			// 获取无向图顶点数和边数
	printf("请输入全部顶点信息:\n");
	Clean();									    // 将换行符去除
	for (i = 0; i < G->vexNum; i++)					// 读取顶点信息,建立顶点表
		scanf("%c", &G->Vexs[i]);
	for (i = 0; i < G->vexNum; i++)
		for (j = 0; j < G->vexNum; j++)
			G->Edge[i][j] = INFINITY;				// 邻接矩阵初始化
	for (k = 0; k < G->arcNum; k++)					// 读入arcNum条边,建立邻接矩阵
	{
		printf("请输入边(Vi, Vj)上的下标i,下标j和权w:\n");
		scanf("%d %d %d", &i, &j, &w);				// 获取边和权
		G->Edge[i][j] = w;							// 无向图矩阵对称
		G->Edge[j][i] = G->Edge[i][j];
	}
	return;
}

/* 迪杰斯特拉(Dijkstra) 算法*/
void ShortestPath_Dijkstra(MGraph G, int v0, Patharc path, ShortPathTable dist)
{
	int v, w, k, min;
	int final[MaxVerterNum];				/* final[w] = 1表示求得顶点 v0 至 vw的最短路                    径,即已访问过顶点vw*/
	for (v = 0; v < G.vexNum; v++)
	{
		final[v] = 0;						// 全部顶点初始化为未知最短路径状态
		dist[v] = G.Edge[v0][v];			// 将与v0点有连线的顶点加上权值
		path[v] = -1;						// 初始化路劲数组p为-1
	}
	dist[v0] = 0;							// v0至v0路径为0
	final[v0] = 1;							// v0至v0不需要路径
	/* 开始主循环,每次求得v0到某个顶点v的最短路径*/
	for (v = 1; v < G.vexNum; v++)
	{
		min = INFINITY;						// 当前所知离v0顶点的最近距离
		for (w = 0; w < G.vexNum; w++)		// 寻找离v0最近的顶点
		{
			if (!final[w] && dist[w] < min)
			{
				k = w;
				min = dist[w];				// w顶点离v0顶点更近
			}
		}
		final[k] = 1;						// 将目前找到的最近的顶点置为1
		for (w = 0; w < G.vexNum; w++)		// 修正当前最短路径及距离
		{
			/* 如果经过v顶点的路径比现在这条路径的长度短的话 */
			if (!final[w] && (min + G.Edge[k][w] < dist[w]))
			{
				/* 找到了更短的路径,修改D[w]和P[w] */
				dist[w] = min + G.Edge[k][w];	// 修改当前路径长度
				path[w] = k;
			}
		}
	}
}

/* 输出最短路径 */
/* Dijkstra算法的结果输出 */
void Show_ShortestPath_Dijkstra(Patharc path, ShortPathTable dist, MGraph G, int v)
{
	int w, k;
	printf("V%d到各点的最短路径如下:\n", v);
	for (w = 0; w < G.vexNum; w++)
	{
		if (w != v)
		{
			printf("V%d-V%d weight: %d", v, w, dist[w]);
			k = path[w];
			printf(" path: V%d", w);
			while (k != -1)  // 当 k = -1 ,结束循环并输出源点
			{
				printf(" <- V%d", k);
				k = path[k];
			}
			printf(" <- V%d\n", v);
		}
	}
	printf("\n");
}

(1) Dijkstra算法函数分析

/* 迪杰斯特拉(Dijkstra) 算法*/
void ShortestPath_Dijkstra(MGraph G, int v0, Patharc path, ShortPathTable dist)
{
	int v, w, k, min;
	int final[MaxVerterNum];				// final[w] = 1表示求得顶点 v0 至 vw的最短路径,即已访问过顶点vw
	for (v = 0; v < G.vexNum; v++)
	{
		final[v] = 0;						// 全部顶点初始化为未知最短路径状态
		dist[v] = G.Edge[v0][v];			// 将与v0点有连线的顶点加上权值
		path[v] = -1;						// 初始化路劲数组p为-1
	}
	dist[v0] = 0;							// v0至v0路径为0
	final[v0] = 1;							// v0至v0不需要路径
	/* 开始主循环,每次求得v0到某个顶点v的最短路径*/
	for (v = 1; v < G.vexNum; v++)
	{
		min = INFINITY;						// 当前所知离v0顶点的最近距离
		for (w = 0; w < G.vexNum; w++)		// 寻找离v0最近的顶点
		{
			if (!final[w] && dist[w] < min)
			{
				k = w;
				min = dist[w];				// w顶点离v0顶点更近
			}
		}
		final[k] = 1;						// 将目前找到的最近的顶点置为1
		for (w = 0; w < G.vexNum; w++)		// 修正当前最短路径及距离
		{
			/* 如果经过v顶点的路径比现在这条路径的长度短的话 */
			if (!final[w] && (min + G.Edge[k][w] < dist[w]))
			{
				/* 找到了更短的路径,修改D[w]和P[w] */
				dist[w] = min + G.Edge[k][w];	// 修改当前路径长度
				path[w] = k;
			}
		}
	}
}

         上面数组final[]保存已有路径的结点,有最短路径的结点的值为 1,无最短路径的结点的值为 0,path[]数组记录结点 V_{i} 的前驱结点,dist[]数组,记录结点 V_{i} 的前驱结点。

        首先进行初始化,final[]数组的元素的值均为 0,path[]数组的值均为 -1,当path[i]=-1时,说明此结点的前驱结点即是源点V_{0},dist[]的元素值初始化为源点V_{0}到邻接点的距离。

        接着进入for循环,for循环内的第一个for循环用于找到 dist[] 数组的最小值。

        for循环内的第二个for循环用于进行修正。

        以上便是Dijkstra算法函数的基本内容。三大块——初始化,找dist[]最小元素、修正路径。


人生是一场无休、无歇、无情的战斗,凡是要做个够得上称为人的人,都得时时向无形的敌人作战。                                                                                                           ——罗曼·罗兰

以此句献给看这篇博客的每一个人。

版权声明:本文为博主原创文章,遵循 CC 4.0 BY-SA 版权协议,转载请附上原文出处链接和本声明。
本文链接:https://blog.csdn.net/qq_61959780/article/details/127983035

智能推荐

class和struct的区别-程序员宅基地

文章浏览阅读101次。4.class可以有⽆参的构造函数,struct不可以,必须是有参的构造函数,⽽且在有参的构造函数必须初始。2.Struct适⽤于作为经常使⽤的⼀些数据组合成的新类型,表示诸如点、矩形等主要⽤来存储数据的轻量。1.Class⽐较适合⼤的和复杂的数据,表现抽象和多级别的对象层次时。2.class允许继承、被继承,struct不允许,只能继承接⼝。3.Struct有性能优势,Class有⾯向对象的扩展优势。3.class可以初始化变量,struct不可以。1.class是引⽤类型,struct是值类型。

android使用json后闪退,应用闪退问题:从json信息的解析开始就会闪退-程序员宅基地

文章浏览阅读586次。想实现的功能是点击顶部按钮之后按关键字进行搜索,已经可以从服务器收到反馈的json信息,但从json信息的解析开始就会闪退,加载listview也不知道行不行public abstract class loadlistview{public ListView plv;public String js;public int listlength;public int listvisit;public..._rton转json为什么会闪退

如何使用wordnet词典,得到英文句子的同义句_get_synonyms wordnet-程序员宅基地

文章浏览阅读219次。如何使用wordnet词典,得到英文句子的同义句_get_synonyms wordnet

系统项目报表导出功能开发_积木报表 多线程-程序员宅基地

文章浏览阅读521次。系统项目报表导出 导出任务队列表 + 定时扫描 + 多线程_积木报表 多线程

ajax 如何从服务器上获取数据?_ajax 获取http数据-程序员宅基地

文章浏览阅读1.1k次,点赞9次,收藏9次。使用AJAX技术的好处之一是它能够提供更好的用户体验,因为它允许在不重新加载整个页面的情况下更新网页的某一部分。另外,AJAX还使得开发人员能够创建更复杂、更动态的Web应用程序,因为它们可以在后台与服务器进行通信,而不需要打断用户的浏览体验。在Web开发中,AJAX(Asynchronous JavaScript and XML)是一种常用的技术,用于在不重新加载整个页面的情况下,从服务器获取数据并更新网页的某一部分。使用AJAX,你可以创建异步请求,从而提供更快的响应和更好的用户体验。_ajax 获取http数据

Linux图形终端与字符终端-程序员宅基地

文章浏览阅读2.8k次。登录退出、修改密码、关机重启_字符终端

随便推点

Python与Arduino绘制超声波雷达扫描_超声波扫描建模 python库-程序员宅基地

文章浏览阅读3.8k次,点赞3次,收藏51次。前段时间看到一位发烧友制作的超声波雷达扫描神器,用到了Arduino和Processing,可惜啊,我不会Processing更看不懂人家的程序,咋办呢?嘿嘿,所以我就换了个思路解决,因为我会一点Python啊,那就动手吧!在做这个案例之前先要搞明白一个问题:怎么将Arduino通过超声波检测到的距离反馈到Python端?这个嘛,我首先想到了串行通信接口。没错!就是串口。只要Arduino将数据发送给COM口,然后Python能从COM口读取到这个数据就可以啦!我先写了一个测试程序试了一下,OK!搞定_超声波扫描建模 python库

凯撒加密方法介绍及实例说明-程序员宅基地

文章浏览阅读4.2k次。端—端加密指信息由发送端自动加密,并且由TCP/IP进行数据包封装,然后作为不可阅读和不可识别的数据穿过互联网,当这些信息到达目的地,将被自动重组、解密,而成为可读的数据。不可逆加密算法的特征是加密过程中不需要使用密钥,输入明文后由系统直接经过加密算法处理成密文,这种加密后的数据是无法被解密的,只有重新输入明文,并再次经过同样不可逆的加密算法处理,得到相同的加密密文并被系统重新识别后,才能真正解密。2.使用时,加密者查找明文字母表中需要加密的消息中的每一个字母所在位置,并且写下密文字母表中对应的字母。_凯撒加密

工控协议--cip--协议解析基本记录_cip协议embedded_service_error-程序员宅基地

文章浏览阅读5.7k次。CIP报文解析常用到的几个字段:普通类型服务类型:[0x00], CIP对象:[0x02 Message Router], ioi segments:[XX]PCCC(带cmd和func)服务类型:[0x00], CIP对象:[0x02 Message Router], cmd:[0x101], fnc:[0x101]..._cip协议embedded_service_error

如何在vs2019及以后版本(如vs2022)上添加 添加ActiveX控件中的MFC类_vs添加mfc库-程序员宅基地

文章浏览阅读2.4k次,点赞9次,收藏13次。有时候我们在MFC项目开发过程中,需要用到一些微软已经提供的功能,如VC++使用EXCEL功能,这时候我们就能直接通过VS2019到如EXCEL.EXE方式,生成对应的OLE头文件,然后直接使用功能,那么,我们上篇文章中介绍了vs2017及以前的版本如何来添加。但由于微软某些方面考虑,这种方式已被放弃。从上图中可以看出,这一功能,在从vs2017版本15.9开始,后续版本已经删除了此功能。那么我们如果仍需要此功能,我们如何在新版本中添加呢。_vs添加mfc库

frame_size (1536) was not respected for a non-last frame_frame_size (1024) was not respected for a non-last-程序员宅基地

文章浏览阅读785次。用ac3编码,执行编码函数时报错入如下:[ac3 @ 0x7fed7800f200] frame_size (1536) was not respected for anon-last frame (avcodec_encode_audio2)用ac3编码时每次送入编码器的音频采样数应该是1536个采样,不然就会报上述错误。这个数字并非刻意固定,而是跟ac3内部的编码算法原理相关。全网找不到,国内音视频之路还有很长的路,音视频人一起加油吧~......_frame_size (1024) was not respected for a non-last frame

Android移动应用开发入门_在安卓移动应用开发中要在活动类文件中声迷你一个复选框变量-程序员宅基地

文章浏览阅读230次,点赞2次,收藏2次。创建Android应用程序一个项目里面可以有很多模块,而每一个模块就对应了一个应用程序。项目结构介绍_在安卓移动应用开发中要在活动类文件中声迷你一个复选框变量

推荐文章

热门文章

相关标签