【神经网络与深度学习-TensorFlow实践】-中国大学MOOC课程(十四)(卷积神经网络))_神经网络与深度学习tensorfloew 实践-程序员宅基地

技术标签: tensorflow  深度学习  神经网络  

14 卷积神经网络

14.1 深度学习基础

14.1.1 深度学习的基本思想

  • 特征工程:尽可能选择和构建出好的特征,使得机器学习算法能够达到最佳性能。是机器学习的上限,而算法就是逼近这个上限
  • 传统的机器学习特证工程
  1. 依靠人工方式提取和设计特征
  2. 需要大量的专业知识和经验
  3. 特征设计和具体任务密切相关
  4. 特征的计算、调整和测试需要大量的时间
  • 隐含层的作业就是提取特征层,因此隐含层也被叫做特征层
  • 深度神经网络:有多层隐含层的神经网络。
  • 使用神经网络,特征工程就没那么重要了,只需要对原始数据做一些必要的预处理之后,把他们直接喂入神经网络之中,通过训练,自动的调整权值,使得预测的结果符合预计的要求,这种方式称为端到端学习:自动的从数据中学习特征。
  • 随着层数的增加,表达出的特征越来越抽象,能力也越好,有多个隐含层的深度神经网络就是深度学习(Deep Learning)
  1. 自动的从数据中学习到与任务相关的特征
  2. 提取出的特征缺乏可解释性
  • 数据驱动:当某个任务的数据量大到一定程度,及其就可能在该任务上超过人类

14.1.2 深度学习三要素

  • 深度学习三要素:数据算法计算机
14.1.2.1 数据

请添加图片描述

  • 数据量大,神经网络随着网络的规模递增
  • 数据量越大,深度学习的优势越明显
  • 大规模深层神经网络需要算法创新改进,使深度学习的性能速度得到保障
  • 训练大规模深层神经网络,需要强大的计算资源

14.2 图像识别与深度学习

  • 图像识别:利用计算机对图像进行处理和分析,使机器能理解图像中的内容
  • 图像识别的核心问题就是图像特征的提取
  • 颜色特征
  1. 颜色直方图:描述了颜色色彩在整幅图中所占的比例,并没有描述每种颜色所处的空间位置,因此颜色特征需要和其他特征配合使用
  • 形状特征:可以提取出景物的轮廓或者形状轮廓
  • 纹理特征:描述了图像或者图像区域的景物的表面性质
  • 语义鸿沟(Semantic Gap):图像的底层视觉特性和高层语义概念之间的鸿沟
  • 还有会出现不相似的视觉特性,相同的语义概念
  • 深度学习:采用端到端的学习方法

14.3 图像卷积

14.3 图像卷积运算

  • 下面看图像的卷积运算是如何实现的
  • 我们知道数字图像在计算机中保存为一个矩阵,矩阵中每个元素的值就是图像中对应像素点的灰度值,对数字图像做卷积运算,就是对图像中每个像素点用它周围像素点的灰度值加权求和去调整这个点的灰度值;
  • 首先需要定义一个卷积核/卷积模板,是一个NN的矩阵,卷积核的尺寸决定了卷积卷积运算的范围,他应该是一个奇数,这样才有一个中心点,卷积核中的数字就是这个点和周围点的权值,一般采用比较小的卷积核,如55、77请添加图片描述
    每次滑动,卷积之后得到的矩阵,会小一圈
    请添加图片描述
    5
    5的卷积核就会小两圈
    请添加图片描述
    如果不想卷积之后的变小,那就可以自己先填充
    请添加图片描述
  • 步长(stride):卷积核一次移动的像素数
  • 步长等于卷积核的边长n,相当于对图像进行缩小了n倍
    请添加图片描述

14.3.2 图像卷积在机器学习中的应用

  • 均值模糊
    请添加图片描述
    请添加图片描述

  • 高斯模糊:根据高斯分布的取值来确定权值
    请添加图片描述
    请添加图片描述
    可以看到高斯模糊在平滑物体表面的同时,能够更好的保持物体的表面和轮廓

  • **边缘检测:**计算当前点和周围点的颜色值或灰度值的差别
    请添加图片描述
    能够检测出竖直的边缘
    请添加图片描述
    能偶检测出水平的边缘,两者结合
    请添加图片描述
    能偶检测出45°角的边缘

请添加图片描述
在prewitt算子的基础上,增加了权重的概念,认为上下左右直线方向的距离大于斜线方向的距离,因此他们的权重更大
请添加图片描述
它通过对邻域中心像素的四方向或者八方向求梯度,再将梯度相加起来,判断中心像素灰度与邻域内其他灰度像素的关系
请添加图片描述
他将高斯和Laplcian算子相结合,综合考虑了对噪声的抑制和边缘检测,它的抗干扰能力强,边界定位精度高,边缘连续性好,而且能够有效提取对比度弱的边界,在图像处理领域中,得到了广泛的应用
请添加图片描述

  • 图像的卷积运算可以看作是提取图像特征的方式,使用不同的卷积核,可以抽取不同的图像特征

14.4 卷积神经网络

14.4.1 卷积神经网络的基本思想

  • 全连接神经网络
  1. 隐含层可以自动学习数据中的特征
  2. 每一个节点都和它前面一层中的所有节点相连,能够最大程度保留输入数据中所有信息,不会漏掉原始数据中每个维度所贡献的信息
  3. 参数量非常大,网络收敛速度慢
  • 动物视觉系统
  1. 视觉皮层的神经元是局部接受信息的
  2. 感受野(receptive field):一个神经元所接受并相应的刺激区域
  • 权值共享

  • 卷积神经网络(Convolutional Neural Networks,CNN)

  1. 使用不同的卷积核
  2. 每个卷积核可以得到一个特征
  3. 多个卷积核可以得到多个特征
  4. 卷积网络采用局部连接和权值共享的机制,使得网络的结构更接近于实际的生物神经网络,降低了网络的复杂性,模型参数的数量远小于全连接神经网络,而且由于同一层中的神经元权值相同,网络可以并行学习。
  5. 卷积核的权值是从数据中学习得到的
  6. 每个卷积网络的权值是根据任务目标自动学习出来的,这样更加灵活和智能,更好的处理语音和视频

14.4.2 卷积神经网络的结构

  • 卷积神经网络是一种多层的前馈型神经网络,从结构上,它可以分为分为特征提取阶段和分类识别阶段
  • 特征提取阶段通常由多个特征曾堆叠而成,每个特征层由卷积层和池化层组成;处在网络前端的特征层用来捕捉图像局部细节信息,后面的特征层捕捉图像中更加抽象的信息;
  • 分类识别阶段通常是一个简单的分类器,例如全连接网络或者支持向量机,他接受最后一个特征层的输出完成分类和识别
  • 特征提取阶段
  1. 卷积层(convolution):特征提取层,使用卷积和提取图像中的特征,这里的卷积运算是有偏置项的;一个卷积核在整张图像中提取到的特征构成特征图(feature map)
  2. 每个卷积层中包含多个卷积核
  3. 在卷积核之后会定一个激活函数(relu)

请添加图片描述

  1. 池化层(pooling):特征映射层;池化是一种下采样运算;在减少数据运算量的同时,保留有用的信息
  2. 如下一个尺寸为66的图片,对他进行最大池化,池化模板的尺寸为22,步长为2,就是把它按照2*2的小区域进行分块,把每个块合并成一个像素,去每个块中的最大值,作为合并后的像素值
  3. 可以得到图像的
  4. 最大池化就是在缩小图像的同时,对每个图像最亮的像素采样,可以得到图像的主要轮廓,因此池化又进行了一次网络提取
  5. 进一步抽象信息
  6. 提高了泛化性,防止过拟合
    请添加图片描述
    请添加图片描述
  • 在网络前端的卷积层中,每个神经元只连接输入图像中很小的一个范围,感受野比较小,能够捕获图像中局部细节的信息;而经过多层卷积层和池化层的堆叠后,后面的卷积层中,神经元的感受野逐层加大,可以捕获图像中更高层,更抽象的信息,从而得到图像在各个不同尺度上的抽象表示。
  • 除了最大池化,还有其他的池化方法
    请添加图片描述
  • 重叠采样的池化(Overlapping):池化步长小于n,每个块之间有相互重叠的部分
  • 池化层在卷积神经网络中并不是一个必须的,在目前一些新的卷积网络中,就没有池化层的出现
  • 卷积神经网络是一种监督学习的神经网络,训练过程与传统的人工神经网络相似;首先,从训练集中取出样本,输入网络;经过逐级变化,传输到输出层,计算输出层与样本标签之间的差值,反向传播误差,采用梯度下降法更新权值,最小化损失,反复迭代,在网络收敛,并达到预期的精度时,结束训练,保存网络参数,以后就可以直接使用这个训练好的网络进行数据分类

14.5 实例:卷积神经网络实现手写数字识别

# 1 导入库
import tensorflow as tf
print("TensorFlow version: ", tf.__version__)

import numpy as np
import matplotlib.pyplot as plt

# 在使用GPU版本的Tensorflow训练模型时,有时候会遇到显存分配的错误
# InternalError: Bias GEMM launch failed
# 这是在调用GPU运行程序时,GPU的显存空间不足引起的,为了避免这个错误,可以对GPU的使用模式进行设置
gpus = tf.config.experimental.list_physical_devices('GPU')# 这是列出当前系统中的所有GPU,放在列表gpus中
# 使用第一块gpu,所以是gpus[0],把它设置为memory_growth模式,允许内存增长也就是说在程序运行过程中,根据需要为TensoFlow进程分配显存
# 如果系统中有多个GPU,可以使用循环语句把它们都设置成为true模式
tf.config.experimental.set_memory_growth(gpus[0], True)

# 2 加载数据
mnist = tf.keras.datasets.mnist
(train_x,train_y),(test_x,test_y) = mnist.load_data()
# (60000,28,28),(60000,),(10000,28,28),(10000,)    
# numpy.ndarray,numpy.ndarray,numpy.ndarray,numpy.ndarray

# 3 数据预处理,这里也可以省去,在之后为进行维度变换
# X_train = train_x.reshape((60000,28*28)) # (60000,784)
# X_test = test_x.reshape((10000,28*28)) # (10000,784)

# 对属性进行归一化,使它的取值在0~1之间,同时转换为tensorflow张量,类型为tf.float32
X_train = train_x.reshape(60000,28,28,1) # (60000,28,28,1)
X_test = test_x.reshape(10000,28,28,1) # (10000,28,28,1)
#X_train = tf.expend_dims(train_x,3)
#X_test = tf.expend_dims(test_x,3)
X_train,X_test = tf.cast(X_train/255.0,tf.float32),tf.cast(X_test/255.0,tf.float32)
y_train,y_test = tf.cast(train_y,tf.int32),tf.cast(test_y,tf.int32)

# 4 建立模型
model = tf.keras.Sequential([
                            # unit1
                            tf.keras.layers.Conv2D(16,kernel_size = (3,3),padding="same",activation=tf.nn.relu,input_shape=(28,28,1)),
                            tf.keras.layers.MaxPool2D(pool_size=(2,2)),

                            # unit2
                            tf.keras.layers.Conv2D(32,kernel_size=(3,3),padding="same",activation=tf.nn.relu),
                            tf.keras.layers.MaxPool2D(pool_size=(2,2)),

                            # unit3
                            tf.keras.layers.Flatten(),

                            # unit4
                            tf.keras.layers.Dense(128,activation="relu"),
                            tf.keras.layers.Dense(10,activation="softmax")
])

# 5 配置训练方法
model.compile(optimizer='adam',
                loss = 'sparse_categorical_crossentropy',
                metrics = ['sparse_categorical_accuracy'])

# 6 训练模型
model.fit(X_train,y_train,batch_size=64,epochs=5,validation_split=0.2)

# 7 评估模型
model.evaluate(X_test,y_test,verbose=2)

# 8 使用模型
np.argmax(model.predict([[X_test[0]]]))# 两层中括号
# 随机抽取4个样本
for i in range(4):
    num = np.random.randint(1,10000)

    plt.subplot(1,4,i+1)
    plt.axis("off")
    plt.imshow(test_x[num],cmap='gray')
    y_pred = np.argmax(model.predict([[X_test[num]]]))
    plt.title("y="+str(test_y[num])+"\ny_pred"+str(y_pred))
plt.show()

输出结果为:

Train on 48000 samples, validate on 12000 samples
Epoch 1/5
2021-12-20 14:04:34.470826: I tensorflow/stream_executor/platform/default/dso_loader.cc:44] Successfully opened dynamic library cublas64_100.dll
2021-12-20 14:04:34.721941: I tensorflow/stream_executor/platform/default/dso_loader.cc:44] Successfully opened dynamic library cudnn64_7.dll
2021-12-20 14:04:35.626785: W tensorflow/stream_executor/cuda/redzone_allocator.cc:312] Internal: Invoking ptxas not supported on Windows
Relying on driver to perform ptx compilation. This message will be only logged once.
48000/48000 [==============================] - 5s 95us/sample - loss: 0.2031 - sparse_categorical_accuracy: 0.9398 - val_loss: 0.0721 - val_sparse_categorical_accuracy: 0.9783
Epoch 2/5
48000/48000 [==============================] - 3s 54us/sample - loss: 0.0616 - sparse_categorical_accuracy: 0.9808 - val_loss: 0.0687 - val_sparse_categorical_accuracy: 0.9797
Epoch 3/5
48000/48000 [==============================] - 3s 54us/sample - loss: 0.0437 - sparse_categorical_accuracy: 0.9868 - val_loss: 0.0480 - val_sparse_categorical_accuracy: 0.9850
Epoch 4/5
48000/48000 [==============================] - 3s 54us/sample - loss: 0.0329 - sparse_categorical_accuracy: 0.9900 - val_loss: 0.0423 - val_sparse_categorical_accuracy: 0.9872
Epoch 5/5
48000/48000 [==============================] - 3s 53us/sample - loss: 0.0248 - sparse_categorical_accuracy: 0.9925 - val_loss: 0.0386 - val_sparse_categorical_accuracy: 0.9892
10000/1 - 1s - loss: 0.0167 - sparse_categorical_accuracy: 0.9886

请添加图片描述

版权声明:本文为博主原创文章,遵循 CC 4.0 BY-SA 版权协议,转载请附上原文出处链接和本声明。
本文链接:https://blog.csdn.net/qq_45954434/article/details/122035955

智能推荐

Acwing第72场周赛+Leetcode第314场周赛_acwing 第72场周赛4625. 压缩文件-程序员宅基地

文章浏览阅读309次。Acwing第72场周赛+Leetcode第314场周赛_acwing 第72场周赛4625. 压缩文件

计算机就业方向-程序员宅基地

文章浏览阅读6.8k次,点赞5次,收藏12次。希望看到这篇文章的学计算机、软件的同学可以互相转载,让大家都知道我们以后的道路是怎样的。有了方向,干什么都有动力,不是吗?(有点长,希望大家先分享,以后慢慢看,有用没用,我说了不算,你看看就知道了!)计算机专业就业方向一、 关于企业计算方向企业计算(Enterprise Computing)是稍时髦较好听的名词,主要是 指企业信息系统,如ERP软件(企业资源规划)、CRM软件(客户关系_计算机就业

基于Java在线电影票购买系统设计实现(源码+lw+部署文档+讲解等)-程序员宅基地

文章浏览阅读4.1k次,点赞2次,收藏4次。社会和科技的不断进步带来更便利的生活,计算机技术也越来越平民化。二十一世纪是数据时代,各种信息经过统计分析都可以得到想要的结果,所以也可以更好的为人们工作、生活服务。电影是生活娱乐的一部分,特别对喜欢看电影的用户来说是非常重要的事情。把计算机技术和影院售票相结合可以更符合现代、用户的要求,实现更为方便的购买电影票的方式。本基于Java Web的在线电影票购买系统采用Java语言和Vue技术,框架采用SSM,搭配MySQL数据库,运行在Idea里。

集合的addAll方法--list.addAll(null)会报错--java.lang.NullPointerException-程序员宅基地

文章浏览阅读1.8k次。Exception in thread "main" java.lang.NullPointerException at java.util.ArrayList.addAll(ArrayList.java:559) at com.iflytek.epdcloud.recruit.utils.quartz.Acool.main(Acool.java:16)import java.u..._addall(null)

java获取当天0点到24点的时间戳,获得当前分钟开始结束时间戳_java 获取某分钟的起止时间戳-程序员宅基地

文章浏览阅读4.5k次。public static void main(String[] args) { Calendar todayStart = Calendar.getInstance(); todayStart.set(Calendar.HOUR_OF_DAY, 0); todayStart.set(Calendar.MINUTE, 0); toda..._java 获取某分钟的起止时间戳

北京内推 | 京东AI研究院计算机视觉实验室招聘三维视觉算法研究型实习生-程序员宅基地

文章浏览阅读1.1k次。合适的工作难找?最新的招聘信息也不知道?AI 求职为大家精选人工智能领域最新鲜的招聘信息,助你先人一步投递,快人一步入职!京东 AI 研究院京东 AI 研究院(https://air.jd..._京东计算机视觉实验室

随便推点

Vue.js npm错误:transpileDependencies.map不是一个函数_transpiledependencies.map is not a function-程序员宅基地

文章浏览阅读483次。这个错误通常是由于npm版本不兼容导致的。在旧版本的npm中,transpileDependencies是一个字符串数组,我们可以直接配置需要编译的依赖库。而在较新版本的npm中,transpileDependencies被改成了一个对象,并且需要使用map()方法来处理。因此,如果我们在较新版本的npm中使用了旧版本的配置方式,就会导致transpileDependencies.map不是一个函数的错误。_transpiledependencies.map is not a function

关于EXT JS 的所有组件_ext.js 组件-程序员宅基地

文章浏览阅读2.3k次。EXTJS的组件体系中有进40种组件,而这些组件又可以大致分成三大类,即基本组件、工具栏组件、表单及元素组件。 基本组件是构成Web UI的主体组件,因为这些组件在其他开发体系中也都有部分存在。这些组件丰富了传统Web UI 的表现,是EXTJS改善Web UI 的重要体现。 EXIJS的基本组件:xtype Class _ext.js 组件

探索 Toolbox-Weex:一款强大的 Weex 工具集合-程序员宅基地

文章浏览阅读241次,点赞3次,收藏6次。探索 Toolbox-Weex:一款强大的 Weex 工具集合项目地址:https://gitcode.com/hugojing/toolbox-weexToolbox-Weex 是一个开源项目,专门为 Weex 开发者提供了一整套便捷的工具和组件,旨在提升 Weex 应用开发的效率和质量。如果你是 Weex 的爱好者或正在寻找优化你的移动应用开发流程的方法,那么 Toolbox-Weex 绝..._wsatoolbox

卷积神经网络模型可视化生成热力图_卷积热力图-程序员宅基地

文章浏览阅读2.3k次。使用Grad-CAM++[51]方法对训练好的卷积神经网络模型进行可视化操作生成热力图以查看响应区域。可视化结果如图3.8所示。其中baseline和 ATN可视化需要的权重来自于分类结果对最后一层卷积层提取的特征进行求导。图3.8中共有4组图像,每组图像从左往右依次为原图,根据baseline权重生成的热力图和根据本章提出的ATN网络权重生成的热力图。热力图的红色越深,则表示该部分的权重越高。从生成的热力图可以看到,baseline 生成的热力图中,虽然在人体区域都有响应,但是背景噪声部分的响应权重也_卷积热力图

网络安全实验---防火墙实验-程序员宅基地

文章浏览阅读2w次,点赞13次,收藏82次。文章目录一、实验目的:二、实验环境:三、实验内容:1. 安装天网防火墙2. 使用天网防火墙进行实验3.在上端的菜单栏最左边点击应用程序规则,点击下方需要修改应用的选项可以对其进行流量控制4.调节ip规则配置,将“允许自己ping探测其他机器”改为禁止,查看能否再次收到reply5.添加一条禁止邻居同学主机的FTP连接规则四、心得体会:五.软件共享一、实验目的:通过实验深入理解防火墙的功能和工作原理熟悉天网防火墙个人版的配置和使用二、实验环境:一台xp虚拟机和一台windows10虚拟机在xp上安_防火墙实验

vue项目运行报错:94% asset optimization ERROR Failed to compile with 2 errors13:03:01 error in ./src/ba-程序员宅基地

文章浏览阅读6.7k次。使用vue编写的前端项目运行报错:88% hashing 89% module assets processing 90% chunk assets processing 94% asset optimization ERROR Failed to compile with 2 errors13:03:01 error in ./src/base/components/head..._94% asset optimization

推荐文章

热门文章

相关标签