OmniQuant-程序员宅基地

技术标签: 人工智能  

模型量化是模型压缩与加速中的一项关键技术,其将模型权重与激活值量化至低 bit,以允许模型占用更少的内存开销并加快推理速度。对于具有海量参数的大语言模型而言,模型量化显得更加重要。例如,GPT-3 模型的 175B 参数当使用 FP16 格式加载时,需消耗 350GB 的内存,需要至少 5 张 80GB 的 A100 GPU。

但若是可以将 GPT-3 模型的权重压缩至 3bit,则可以实现单张 A100-80GB 完成所有模型权重的加载。大语言模型权重、激活的全方位低bit可微量化,已集成进商用APP

现有的大语言模型后训练量化算法依赖于手工制定量化参数,优于缺乏相应的优化过程,导致面对低 bit 量化时,现有的方法都表现出显著的性能下降。尽管量化感知训练在确定最佳量化配置方面是有效的,但它需要引入大量额外的训练开销和训练数据。尤其是大语言模型本身的计算量进一步阻碍了量化感知训练在大预言模型量化上的应用。

这引出一个问题:我们能否在保持后训练量化的时间和数据效率的同时,达到量化感知训练的性能?

为了解决大语言模型后训练量化中的量化参数优化问题,来自上海人工智能实验室、香港大学、香港中文大学的研究者们提出了《OmniQuant: Omnidirectionally Calibrated Quantization for Large Language Models》。该算法同时支持大语言模型中的权重与激活值的量化,且覆盖多种量化 bit 位设置。

arXiv 论文地址:https://arxiv.org/abs/2308.13137

OpenReview 论文地址:https://openreview.net/forum?id=8Wuvhh0LYW

代码地址:https://github.com/OpenGVLab/OmniQuant

框架方法

如上图所示,OmniQuant 是一种针对大语言模型(LLM)的可微分量化技术,同时支持仅权重量化和权重激活值同时量化。并且,其在实现高性能量化模型的同时,保持了后训练量化的训练时间高效性和数据高效性。例如,OmniQuant 可在单卡 A100-40GB 上,在 1-16 小时内完成对 LLaMA-7B ~ LLaMA70B 模型量化参数的更新。

为了达到这个目标,OmniQuant 采用了一个 Block-wise 量化误差最小化框架。同时,OmniQuant 设计了两种新颖的策略来增加可学习的量化参数,包括可学习的权重裁剪(Learnable Weight Clipping,LWC),以减轻量化权重的难度,以及一个可学习的等价转换(Learnable Equivalent Transformation, LET),进一步将量化的挑战从激活值转移到权重。

此外,OmniQuant 引入的所有可学习参数在量化完成后可以被融合消除,量化模型可以基于现有工具完成在多平台的部署,包括 GPU、Android、IOS 等等。

Block-wise 量化误差最小化

OmniQuant 提出了一个新的优化流程,该流程采用 Block-wise 量化误差最小化,并且以可微分的方式优化额外的量化参数。其中,优化目标公式化如下:

可学习的权重裁剪 (LWC)

等价转换在模型权重和激活值之间进行量级迁移。OmniQuant 采用的可学习等价转换使得在参数优化过程中会使得模型权重的分布随着训练不断地发生改变。此前直接学习权重裁剪阈值的方法 [1,2] 只适用于权重分布不发生剧烈改变的情况,否则会难以收敛。基于此问题,与以往方法直接学习权重裁剪阈值不同,LWC 通过以下方式优化裁剪强度:

可学习的等价转换 (LET)

除了通过优化裁剪阈值来实现更适合量化的权重的 LWC 之外,OmniQuant 通过 LET 进一步降低激活值的量化难度。考虑到 LLM 激活值中的异常值是存在于特定通道,以前的方法如 SmoothQuant [3], Outlier Supression+[4] 通过数学上的等价转换将量化的难度从激活值转移到权重。

然而,手工选择或者贪心搜索得到的等价转换参数会限制量化模型的性能。得益于 Block-wise 量化误差最小化的引入,OmniQuant 的 LET 可以以一种可微分的方式确定最优的等价转换参数。受 Outlier Suppression+~\citep {outlier-plus} 的启发,采用了通道级的缩放和通道级的移位来操纵激活分布,为激活值中的异常值问题提供了一个有效的解决方案。具体来说,OmniQuant 探索了线性层和注意力操作中的等价转换。

其中 Q_a 是普通的 MinMax 量化器,Q_w 是带有可学习权重裁剪(即所提出的 LWC)的 MinMax 量化器。

注意力操作中的等价转换:除了线性层之外,注意力操作也占据了 LLM 的大部分计算。此外,LLM 的自回归推理模式需要为每个 token 存储键值(KV)缓存,这对于长序列来说导致了巨大的内存需求。因此,OmniQuant 也考虑将自主力计算中的 Q/K/V 矩阵量化为低位。具体来说,自注意力矩阵中的可学习等效变换可以写为:

伪代码

OmniQuant 的伪算法如上图所示。注意,LWC 与 LET 引入的额外参数在模型量化完后都可以被消除,即 OmniQuant 不会给量化模型引入任何额外开销,因此其可直接适配于现有的量化部署工具。

实验性能

上图显示了 OmniQuant 在 LLaMA 模型上仅权重量化结果的实验结果,更多 OPT 模型结果详见原文。可以看出,OmniQuant 在各种 LLM 模型(OPT、LLaMA-1、LLaMA-2)以及多样化的量化配置(包括 W2A16、W2A16g128、W2A16g64、W3A16、W3A16g128、W4A16 和 W4A16g128)中,始终优于以前的 LLM 仅权重量化方法。同时,这些实验表明了 OmniQuant 的通用性,能够适应多种量化配置。例如,尽管 AWQ [5] 在分组量化方面特别有效,但 OmniQuant 在通道级和分组级量化中均显示出更优的性能。此外,随着量化比特位数的减少,OmniQuant 的性能优势变得更加明显。            whaosoft aiot http://143ai.com

在权重和激活值都量化的设置中中,实验主要关注点在于 W6A6 和 W4A4 量化。实验设置中排除了 W8A8 量化,因为与全精度模型相比,此前的 SmoothQuant 几乎可以实现无损的 W8A8 模型量化。上图显示了 OmniQuant 在 LLaMA 模型上权重激活值都量化结果的实验结果。值得注意的是,在 W4A4 量化的不同模型中,OmniQuant 显著提高了平均准确率,增幅在 + 4.99% ∼ +11.80% 之间。特别是在 LLaMA-7B 模型中,OmniQuant 甚至以 + 6.22% 的显著差距超越了最近的量化感知训练方法 LLM-QAT [6]。这一改进证明了引入额外可学习参数的有效性,这比量化感知训练所采用的全局权重调整更为有益。

同时,使用 OmniQuant 量化的模型可以在 MLC-LLM [7] 上实现无缝部署。上图展示了 LLaMA 系列量化模型在 NVIDIA A100-80G 上的内存需求和推理速度。

Weights Memory (WM) 代表量化权重存储,而 Running Memory (RM) 表示推理过程中的内存,后者更高是因为保留了某些激活值。推理速度是通过生成 512 个令牌来衡量的。显而易见,与 16 位全精度模型相比,量化模型显著减少了内存使用。而且,W4A16g128 和 W2A16g128 量化几乎使推理速度翻倍。

值得注意的是,MLC-LLM [7] 也支持 OmniQuant 量化模型在其余平台的部署,包括 Android 手机和 IOS 手机。如上图所示,近期的应用 Private LLM 即是利用 OmniQuant 算法来完成 LLM 在 iPhone、iPad,macOS 等多平台的内存高效部署。

总结

OmniQuant 是一种将量化推进到到低比特格式的先进大语言模型量化算法。OmniQuant 的核心原则是保留原始的全精度权重的同时添加可学习的量化参数。它利用可学习的权重才接和等价变换来优化权重和激活值的量化兼容性。在融合梯度更新的同时,OmniQuant 保持了与现有的 PTQ 方法相当的训练时间效率和数据效率。此外,OmniQuant 还确保了硬件兼容性,因为其添加的可训练参数可以被融合到原模型中不带来任何额外开销。

版权声明:本文为博主原创文章,遵循 CC 4.0 BY-SA 版权协议,转载请附上原文出处链接和本声明。
本文链接:https://blog.csdn.net/qq_29788741/article/details/136533080

智能推荐

51单片机的中断系统_51单片机中断篇-程序员宅基地

文章浏览阅读3.3k次,点赞7次,收藏39次。CPU 执行现行程序的过程中,出现某些急需处理的异常情况或特殊请求,CPU暂时中止现行程序,而转去对异常情况或特殊请求进行处理,处理完毕后再返回现行程序断点处,继续执行原程序。void 函数名(void) interrupt n using m {中断函数内容 //尽量精简 }编译器会把该函数转化为中断函数,表示中断源编号为n,中断源对应一个中断入口地址,而中断入口地址的内容为跳转指令,转入本函数。using m用于指定本函数内部使用的工作寄存器组,m取值为0~3。该修饰符可省略,由编译器自动分配。_51单片机中断篇

oracle项目经验求职,网络工程师简历中的项目经验怎么写-程序员宅基地

文章浏览阅读396次。项目经验(案例一)项目时间:2009-10 - 2009-12项目名称:中驰别克信息化管理整改完善项目描述:项目介绍一,建立中驰别克硬件档案(PC,服务器,网络设备,办公设备等)二,建立中驰别克软件档案(每台PC安装的软件,财务,HR,OA,专用系统等)三,能过建立的档案对中驰别克信息化办公环境优化(合理使用ADSL宽带资源,对域进行调整,对文件服务器进行优化,对共享打印机进行调整)四,优化完成后..._网络工程师项目经历

LVS四层负载均衡集群-程序员宅基地

文章浏览阅读1k次,点赞31次,收藏30次。LVS:Linux Virtual Server,负载调度器,内核集成, 阿里的四层SLB(Server Load Balance)是基于LVS+keepalived实现。NATTUNDR优点端口转换WAN性能最好缺点性能瓶颈服务器支持隧道模式不支持跨网段真实服务器要求anyTunneling支持网络private(私网)LAN/WAN(私网/公网)LAN(私网)真实服务器数量High (100)High (100)真实服务器网关lvs内网地址。

「技术综述」一文道尽传统图像降噪方法_噪声很大的图片可以降噪吗-程序员宅基地

文章浏览阅读899次。https://www.toutiao.com/a6713171323893318151/作者 | 黄小邪/言有三编辑 | 黄小邪/言有三图像预处理算法的好坏直接关系到后续图像处理的效果,如图像分割、目标识别、边缘提取等,为了获取高质量的数字图像,很多时候都需要对图像进行降噪处理,尽可能的保持原始信息完整性(即主要特征)的同时,又能够去除信号中无用的信息。并且,降噪还引出了一..._噪声很大的图片可以降噪吗

Effective Java 【对于所有对象都通用的方法】第13条 谨慎地覆盖clone_为继承设计类有两种选择,但无论选择其中的-程序员宅基地

文章浏览阅读152次。目录谨慎地覆盖cloneCloneable接口并没有包含任何方法,那么它到底有什么作用呢?Object类中的clone()方法如何重写好一个clone()方法1.对于数组类型我可以采用clone()方法的递归2.如果对象是非数组,建议提供拷贝构造器(copy constructor)或者拷贝工厂(copy factory)3.如果为线程安全的类重写clone()方法4.如果为需要被继承的类重写clone()方法总结谨慎地覆盖cloneCloneable接口地目的是作为对象的一个mixin接口(详见第20_为继承设计类有两种选择,但无论选择其中的

毕业设计 基于协同过滤的电影推荐系统-程序员宅基地

文章浏览阅读958次,点赞21次,收藏24次。今天学长向大家分享一个毕业设计项目基于协同过滤的电影推荐系统项目运行效果:项目获取:https://gitee.com/assistant-a/project-sharing21世纪是信息化时代,随着信息技术和网络技术的发展,信息化已经渗透到人们日常生活的各个方面,人们可以随时随地浏览到海量信息,但是这些大量信息千差万别,需要费事费力的筛选、甄别自己喜欢或者感兴趣的数据。对网络电影服务来说,需要用到优秀的协同过滤推荐功能去辅助整个系统。系统基于Python技术,使用UML建模,采用Django框架组合进行设

随便推点

你想要的10G SFP+光模块大全都在这里-程序员宅基地

文章浏览阅读614次。10G SFP+光模块被广泛应用于10G以太网中,在下一代移动网络、固定接入网、城域网、以及数据中心等领域非常常见。下面易天光通信(ETU-LINK)就为大家一一盘点下10G SFP+光模块都有哪些吧。一、10G SFP+双纤光模块10G SFP+双纤光模块是一种常规的光模块,有两个LC光纤接口,传输距离最远可达100公里,常用的10G SFP+双纤光模块有10G SFP+ SR、10G SFP+ LR,其中10G SFP+ SR的传输距离为300米,10G SFP+ LR的传输距离为10公里。_10g sfp+

计算机毕业设计Node.js+Vue基于Web美食网站设计(程序+源码+LW+部署)_基于vue美食网站源码-程序员宅基地

文章浏览阅读239次。该项目含有源码、文档、程序、数据库、配套开发软件、软件安装教程。欢迎交流项目运行环境配置:项目技术:Express框架 + Node.js+ Vue 等等组成,B/S模式 +Vscode管理+前后端分离等等。环境需要1.运行环境:最好是Nodejs最新版,我们在这个版本上开发的。其他版本理论上也可以。2.开发环境:Vscode或HbuilderX都可以。推荐HbuilderX;3.mysql环境:建议是用5.7版本均可4.硬件环境:windows 7/8/10 1G内存以上;_基于vue美食网站源码

oldwain随便写@hexun-程序员宅基地

文章浏览阅读62次。oldwain随便写@hexun链接:http://oldwain.blog.hexun.com/ ...

渗透测试-SQL注入-SQLMap工具_sqlmap拖库-程序员宅基地

文章浏览阅读843次,点赞16次,收藏22次。用这个工具扫描其它网站时,要注意法律问题,同时也比较慢,所以我们以之前写的登录页面为例子扫描。_sqlmap拖库

origin三图合一_神教程:Origin也能玩转图片拼接组合排版-程序员宅基地

文章浏览阅读1.5w次,点赞5次,收藏38次。Origin也能玩转图片的拼接组合排版谭编(华南师范大学学报编辑部,广州 510631)通常,我们利用Origin软件能非常快捷地绘制出一张单独的绘图。但是,我们在论文的撰写过程中,经常需要将多种科学实验图片(电镜图、示意图、曲线图等)组合在一张图片中。大多数人都是采用PPT、Adobe Illustrator、CorelDraw等软件对多种不同类型的图进行拼接的。那么,利用Origin软件能否实..._origin怎么把三个图做到一张图上

51单片机智能电风扇控制系统proteus仿真设计( 仿真+程序+原理图+报告+讲解视频)_电风扇模拟控制系统设计-程序员宅基地

文章浏览阅读4.2k次,点赞4次,收藏51次。51单片机智能电风扇控制系统仿真设计( proteus仿真+程序+原理图+报告+讲解视频)仿真图proteus7.8及以上 程序编译器:keil 4/keil 5 编程语言:C语言 设计编号:S0042。_电风扇模拟控制系统设计