树莓派基础实验9:蜂鸣器实验_树莓派 实验-程序员宅基地

技术标签: python  树莓派基础实验  物联网  raspberry pi  

一、介绍

   蜂鸣器是音频信号装置,蜂鸣器可分为有源蜂鸣器和无源蜂鸣器。有源蜂鸣器直接接上额定电源就可以连续发声;而无源蜂鸣器则和电磁扬声器一样,需要接在音频输出电路中才能周期性地振动发声。


二、组件

★Raspberry Pi 3主板*1

★树莓派电源*1

★40P软排线*1

★有源蜂鸣器模块*1

★无源蜂鸣器模块*1

★双色LED模块*1

★面包板*1

★跳线若干

三、实验原理

蜂鸣器原理示意图

有源蜂鸣器模块

无源蜂鸣器模块

蜂鸣器原理图

  有源蜂鸣器内置振荡源,所以通电时会发出声音。但无源蜂鸣器没有这种内置振荡源,所以如果使用直流信号,他不会发出轰鸣声;相反,你需要使用频率在2k到5k之间的方波来驱动它。由于有内置振荡电路,所以有源蜂鸣器通常比无源蜂鸣器昂贵。
  将两个蜂鸣器的引脚朝上,你可以看到带有绿色电路板的引脚是一个无源蜂鸣器。而另一个带有黑色塑料外壳,而不是电路板的蜂鸣器是有源蜂鸣器。
有源与无缘蜂鸣器对比

四、实验步骤


有源蜂鸣器:

  第1步:连接电路。这里要注意的是:蜂鸣器的电源是使用的3.3V,而不是前面实验所使用的5V,若使用5V电源,蜂鸣器会异常。

树莓派 T型转接板 有源蜂鸣器
GPIO 0(序号11) GPIO 17 SIG(I/O)
3.3V 3.3V VCC
GND GND GND

有源蜂鸣器实验电路图

有源蜂鸣器实物连接图

  第2步:编程。通过改变输入到蜂鸣器的信号电平,低电平是响,高电平是停止响来控制蜂鸣器。

#!/usr/bin/env python
import RPi.GPIO as GPIO
import time

Buzzer = 11    # pin11

def setup(pin):
	global BuzzerPin
	BuzzerPin = pin
	GPIO.setmode(GPIO.BOARD)       # Numbers GPIOs by physical location
	GPIO.setup(BuzzerPin, GPIO.OUT)
	GPIO.output(BuzzerPin, GPIO.HIGH)

def on():
	GPIO.output(BuzzerPin, GPIO.LOW)	
	#低电平是响
def off():
	GPIO.output(BuzzerPin, GPIO.HIGH)
	#高电平是停止响
def beep(x):    #响3秒后停止3秒
	on()
	time.sleep(x)
	off()
	time.sleep(x)

def loop():
	while True:
		beep(3)

def destroy():
	GPIO.output(BuzzerPin, GPIO.HIGH)
	GPIO.cleanup()                     # Release resource

if __name__ == '__main__':     # Program start from here
	setup(Buzzer)
	try:
		loop()
	except KeyboardInterrupt:  # When 'Ctrl+C' is pressed, the child program destroy() will be  executed.
		destroy()

无源蜂鸣器:

  第1步:连接电路。这里要注意的是:蜂鸣器的电源是使用的3.3V,而不是前面实验所使用的5V,若使用5V电源,蜂鸣器会异常。

树莓派 T型转接板 无源蜂鸣器
GPIO 0(序号11) GPIO 17 SIG(I/O)
3.3V 3.3V VCC
GND GND GND

无源蜂鸣器实验电路图

无源蜂鸣器实物连接图

  第2步:编程前先介绍本次编程需要的几个知识点:
  使用无源蜂鸣器,只要输出不同频率的PWM波,即可发出不同的音符。不同的音符组合起来就是一个曲子了。

乐谱简析:

  • 音阶
      音阶是音乐必不可少的要素,主要由声音的频率决定。通过给蜂鸣器不同频率的音频脉冲,可以产生不同的音阶,而要产生某频率的音频脉冲,最简单的办法是以该音频的频率除以2的值,函数ChangeFrequency(Frequency)使用该值为参数改变蜂鸣器输入方波信号的频率,蜂鸣器上就可发出该频率的声音。
      若想改变音阶,只需要改变频率即可。下表为各音调音符频率对照表,据此可产生不同音阶的音符。“#”表示半音,用于上升或下降半个音,乘以2就提升该声音一个8度音阶,减半则降一个8度。
    无源蜂鸣器音阶频率对照表
  • 节拍
      若要构成音乐,光有音阶是不够的,还需要节拍,也就是音符持续时间的长短,一般用拍数表示。至于1拍是多少秒,没有严格的规定,只要节拍适宜,声音悦耳即可。假如某首歌曲的节奏是每分钟120拍,那么1拍为0.5 s,1/4拍为0.125 s,以此类推可得到其他节拍对应的时长。这样,利用不同的频率,加上与拍数对应的延时,就构成了乐曲。

  第3步:开始编程。 按照蜂鸣器音阶频率对照表,定义C调低、中、高各音符,对应的频率的列表。CL表示C调低音符列表。

#!/usr/bin/env python
import RPi.GPIO as GPIO
import time

Buzzer = 11

CL = [0, 131, 147, 165, 175, 196, 211, 248]          
   # C调低音符的频率列表,第一位为0是占位用,后面不使用
   #除0外,依次是1do、2re、3mi、4fa、5sol、6la、7si
CM = [0, 262, 294, 330, 350, 393, 441, 495]          
   # Frequency of Middle C notes

CH = [0, 525, 589, 661, 700, 786, 882, 990]           
  # Frequency of High C notes

  第4步: 利用上面定义的频率的列表,定义歌曲的音符和节拍列表。

song_0 = [      CL[1], CL[2], CL[3], CL[4], CL[5], CL[6], CL[7],
                CM[1], CM[2], CM[3], CM[4], CM[5], CM[6], CM[7], 
                CH[1], CH[2], CH[3], CH[4], CH[5], CH[6], CH[7] ]
 # song_0表示从低音do依次到高音si的音符列表
beat_0 = [      2, 2, 2, 2, 2, 2, 2,                         
                2, 2, 2, 2, 2, 2, 2,  
                2, 2, 2, 2, 2, 2, 2  ]
 # song_0的节拍, 2表示2个1/8节拍。一个1/8节拍为0.5秒延迟。
song_1 = [      CM[3], CM[5], CM[6], CM[3], CM[2], CM[3], CM[5], CM[6], 
                        CH[1], CM[6], CM[5], CM[1], CM[3], CM[2], CM[2], CM[3], 
                        CM[5], CM[2], CM[3], CM[3], CL[6], CL[6], CL[6], CM[1],
                        CM[2], CM[3], CM[2], CL[7], CL[6], CM[1], CL[5] ]
# Notes of song1
beat_1 = [      1, 1, 3, 1, 1, 3, 1, 1,                         
                        1, 1, 1, 1, 1, 1, 3, 1, 
                        1, 3, 1, 1, 1, 1, 1, 1, 
                        1, 2, 1, 1, 1, 1, 1, 1, 
                        1, 1, 3 ]
# Beats of song 1, 1 means 1/8 beats
song_2 = [      CM[1], CM[1], CM[1], CL[5], CM[3], CM[3], CM[3], CM[1], 
                        CM[1], CM[3], CM[5], CM[5], CM[4], CM[3], CM[2], CM[2], 
                        CM[3], CM[4], CM[4], CM[3], CM[2], CM[3], CM[1], CM[1], 
                        CM[3], CM[2], CL[5], CL[7], CM[2], CM[1]        ]
# Notes of song2
beat_2 = [      1, 1, 2, 2, 1, 1, 2, 2,                         
                        1, 1, 2, 2, 1, 1, 3, 1, 
                        1, 2, 2, 1, 1, 2, 2, 1, 
                        1, 2, 2, 1, 1, 3 ]
# Beats of song 2, 1 means 1/8 beats,0.5 second

  第5步: 定义初始化设置函数setup()。

def setup():
        GPIO.setmode(GPIO.BOARD)                # Numbers GPIOs by physical location
        GPIO.setup(Buzzer, GPIO.OUT)    # Set pins' mode is output
        global Buzz                                             # Assign a global variable to replace GPIO.PWM 
        Buzz = GPIO.PWM(Buzzer, 440)    # 440 is initial frequency.
        Buzz.start(50)                                  # Start Buzzer pin with 50% duty ration

  第6步: 定义循环函数loop(),主要有三部分,分别播放3首曲子。

def loop():
        while True:
  #--------------------------------------------
                print '\n\n    Playing Low C notes...'
                for i in range(0, 7):         # Play song 0的C调低音音符
                        Buzz.ChangeFrequency(song_0[i])
                        # 根据歌曲的音符改变频率
                        print i      #打印i的值
                        time.sleep(beat_0[i] * 0.5)     
                        # 根据节拍列表每个音符延迟1秒,2 beats*0.5s=1s

                print '\n\n    Playing Middle C notes...'
                for i in range(7, 14):         # Play song 0
                        Buzz.ChangeFrequency(song_0[i]) # Change the frequency along the song note
                        print i
                        time.sleep(beat_0[i] * 0.5)     # delay a note for beat * 0.5s

                print '\n\n    Playing High C notes...'
                for i in range(14, 21):         # Play song 0
                        Buzz.ChangeFrequency(song_0[i]) # Change the frequency along the song note
                        print i
                        time.sleep(beat_0[i] * 0.5)     # delay a note for beat * 0.5s
                Buzz.ChangeFrequency(0.5)  #一首曲子结束,间隔3秒
                time.sleep(3)
   #--------------------------------------------   
                print '\n    Playing song 1...'
                for i in range(0, len(song_1)):         # Play song 1
                         Buzz.ChangeFrequency(song_1[i]) # Change the frequency along the song note
                         time.sleep(beat_1[i] * 0.5)     # delay a note for beat * 0.5s
                Buzz.ChangeFrequency(0.5) #一首曲子结束,间隔3秒
                time.sleep(3)                          
    #--------------------------------------------
                print '\n\n    Playing song 2...'
                for i in range(0, len(song_2)):         # Play song 1
                        Buzz.ChangeFrequency(song_2[i]) # Change the frequency along the song note
                        time.sleep(beat_2[i] * 0.5)     # delay a note for beat * 0.5s
                Buzz.ChangeFrequency(0.5)
                time.sleep(3)

  第7步。

def destory():
        Buzz.stop()                                     # Stop the buzzer
        GPIO.output(Buzzer, 1)          # Set Buzzer pin to High
        GPIO.cleanup()                          # Release resource

if __name__ == '__main__':              # Program start from here
        setup()
        try:
                loop()
        except KeyboardInterrupt:       # When 'Ctrl+C' is pressed, the child program destroy() will be  executed.
                destory()

在这里插入图片描述

版权声明:本文为博主原创文章,遵循 CC 4.0 BY-SA 版权协议,转载请附上原文出处链接和本声明。
本文链接:https://blog.csdn.net/chinacqzgp/article/details/106532796

智能推荐

使用nginx解决浏览器跨域问题_nginx不停的xhr-程序员宅基地

文章浏览阅读1k次。通过使用ajax方法跨域请求是浏览器所不允许的,浏览器出于安全考虑是禁止的。警告信息如下:不过jQuery对跨域问题也有解决方案,使用jsonp的方式解决,方法如下:$.ajax({ async:false, url: 'http://www.mysite.com/demo.do', // 跨域URL ty..._nginx不停的xhr

在 Oracle 中配置 extproc 以访问 ST_Geometry-程序员宅基地

文章浏览阅读2k次。关于在 Oracle 中配置 extproc 以访问 ST_Geometry,也就是我们所说的 使用空间SQL 的方法,官方文档链接如下。http://desktop.arcgis.com/zh-cn/arcmap/latest/manage-data/gdbs-in-oracle/configure-oracle-extproc.htm其实简单总结一下,主要就分为以下几个步骤。..._extproc

Linux C++ gbk转为utf-8_linux c++ gbk->utf8-程序员宅基地

文章浏览阅读1.5w次。linux下没有上面的两个函数,需要使用函数 mbstowcs和wcstombsmbstowcs将多字节编码转换为宽字节编码wcstombs将宽字节编码转换为多字节编码这两个函数,转换过程中受到系统编码类型的影响,需要通过设置来设定转换前和转换后的编码类型。通过函数setlocale进行系统编码的设置。linux下输入命名locale -a查看系统支持的编码_linux c++ gbk->utf8

IMP-00009: 导出文件异常结束-程序员宅基地

文章浏览阅读750次。今天准备从生产库向测试库进行数据导入,结果在imp导入的时候遇到“ IMP-00009:导出文件异常结束” 错误,google一下,发现可能有如下原因导致imp的数据太大,没有写buffer和commit两个数据库字符集不同从低版本exp的dmp文件,向高版本imp导出的dmp文件出错传输dmp文件时,文件损坏解决办法:imp时指定..._imp-00009导出文件异常结束

python程序员需要深入掌握的技能_Python用数据说明程序员需要掌握的技能-程序员宅基地

文章浏览阅读143次。当下是一个大数据的时代,各个行业都离不开数据的支持。因此,网络爬虫就应运而生。网络爬虫当下最为火热的是Python,Python开发爬虫相对简单,而且功能库相当完善,力压众多开发语言。本次教程我们爬取前程无忧的招聘信息来分析Python程序员需要掌握那些编程技术。首先在谷歌浏览器打开前程无忧的首页,按F12打开浏览器的开发者工具。浏览器开发者工具是用于捕捉网站的请求信息,通过分析请求信息可以了解请..._初级python程序员能力要求

Spring @Service生成bean名称的规则(当类的名字是以两个或以上的大写字母开头的话,bean的名字会与类名保持一致)_@service beanname-程序员宅基地

文章浏览阅读7.6k次,点赞2次,收藏6次。@Service标注的bean,类名:ABDemoService查看源码后发现,原来是经过一个特殊处理:当类的名字是以两个或以上的大写字母开头的话,bean的名字会与类名保持一致public class AnnotationBeanNameGenerator implements BeanNameGenerator { private static final String C..._@service beanname

随便推点

二叉树的各种创建方法_二叉树的建立-程序员宅基地

文章浏览阅读6.9w次,点赞73次,收藏463次。1.前序创建#include<stdio.h>#include<string.h>#include<stdlib.h>#include<malloc.h>#include<iostream>#include<stack>#include<queue>using namespace std;typed_二叉树的建立

解决asp.net导出excel时中文文件名乱码_asp.net utf8 导出中文字符乱码-程序员宅基地

文章浏览阅读7.1k次。在Asp.net上使用Excel导出功能,如果文件名出现中文,便会以乱码视之。 解决方法: fileName = HttpUtility.UrlEncode(fileName, System.Text.Encoding.UTF8);_asp.net utf8 导出中文字符乱码

笔记-编译原理-实验一-词法分析器设计_对pl/0作以下修改扩充。增加单词-程序员宅基地

文章浏览阅读2.1k次,点赞4次,收藏23次。第一次实验 词法分析实验报告设计思想词法分析的主要任务是根据文法的词汇表以及对应约定的编码进行一定的识别,找出文件中所有的合法的单词,并给出一定的信息作为最后的结果,用于后续语法分析程序的使用;本实验针对 PL/0 语言 的文法、词汇表编写一个词法分析程序,对于每个单词根据词汇表输出: (单词种类, 单词的值) 二元对。词汇表:种别编码单词符号助记符0beginb..._对pl/0作以下修改扩充。增加单词

android adb shell 权限,android adb shell权限被拒绝-程序员宅基地

文章浏览阅读773次。我在使用adb.exe时遇到了麻烦.我想使用与bash相同的adb.exe shell提示符,所以我决定更改默认的bash二进制文件(当然二进制文件是交叉编译的,一切都很完美)更改bash二进制文件遵循以下顺序> adb remount> adb push bash / system / bin /> adb shell> cd / system / bin> chm..._adb shell mv 权限

投影仪-相机标定_相机-投影仪标定-程序员宅基地

文章浏览阅读6.8k次,点赞12次,收藏125次。1. 单目相机标定引言相机标定已经研究多年,标定的算法可以分为基于摄影测量的标定和自标定。其中,应用最为广泛的还是张正友标定法。这是一种简单灵活、高鲁棒性、低成本的相机标定算法。仅需要一台相机和一块平面标定板构建相机标定系统,在标定过程中,相机拍摄多个角度下(至少两个角度,推荐10~20个角度)的标定板图像(相机和标定板都可以移动),即可对相机的内外参数进行标定。下面介绍张氏标定法(以下也这么称呼)的原理。原理相机模型和单应矩阵相机标定,就是对相机的内外参数进行计算的过程,从而得到物体到图像的投影_相机-投影仪标定

Wayland架构、渲染、硬件支持-程序员宅基地

文章浏览阅读2.2k次。文章目录Wayland 架构Wayland 渲染Wayland的 硬件支持简 述: 翻译一篇关于和 wayland 有关的技术文章, 其英文标题为Wayland Architecture .Wayland 架构若是想要更好的理解 Wayland 架构及其与 X (X11 or X Window System) 结构;一种很好的方法是将事件从输入设备就开始跟踪, 查看期间所有的屏幕上出现的变化。这就是我们现在对 X 的理解。 内核是从一个输入设备中获取一个事件,并通过 evdev 输入_wayland

推荐文章

热门文章

相关标签