【物联网】全面了解ESP-01SWiFi模块_esp01s-程序员宅基地

技术标签: 小黑与物联网  嵌入式硬件  单片机  

ESP-01S是一款基于ESP8266芯片的WiFi模块,它提供了低成本、低功耗和高度集成的解决方案,适用于物联网和嵌入式应用。本文将介绍ESP-01S模块的功能和特点,并提供一个简单的WiFi控制示例。



前些天发现了一个巨牛的人工智能学习网站,通俗易懂,风趣幽默,忍不住分享一下给大家。点击跳转到网站:人工智能



目录

ESP-01S模块管脚功能:

ESP-01S特点:

启动模式:

基础TA指令介绍:

 ESP-01S硬件连接:

ESP-01S固件烧录和配置:

通过stm32开发板进行WiFi控制:

HAL库开发:

标准库开发:

基于Arduino主控制器:

总结:


ESP-01S模块管脚功能:

Pin脚编号 Pin脚名称 备注
1 GND GND
2 IO2 U1_TXD,I2C_SDA,I2S0_BCK
3 IO0 GPIO0,HSPI_MISO,I2SI_DATA
4 RXD GPIO3,I2SO_DATA
5 TXD GPIO1
6 EN 芯片使能端,高电平有效
7 RST 复位引脚,低电平有效
8 VCC 模块供电引脚,电压范围3.0~3.6

 注意:不可以使用USB转TTL的3.3v或5v进行供电,建议使用2节干电池或经过LDO转换后的3.3v

ESP-01S特点:

  • 小巧的尺寸:ESP-01S模块具有紧凑的设计,适用于空间有限的应用。
  • WiFi功能:它支持802.11b/g/n标准,允许设备连接到无线网络。
  • 高度集成:ESP-01S集成了WiFi功能和处理器,减少了外部组件的需求。
  • AT指令支持:通过串口通信,可以使用AT指令进行配置和控制。
  • 低功耗:ESP-01S模块具有低功耗特性,适用于长时间运行的应用。
  • 容易使用:ESP-01S模块易于配置和应用,有许多开发资源和示例代码可用。

启动模式:

模式

CH-PD

(EN)

RST GPIO5 GPIO0 GPIO2 TXD0
下载方式
运行模式
测试模式 - - -

基础TA指令介绍:

指令 说明 示例
AT 测试AT是否OK

AT

OK

AT+GMR 返回固件版本信息

AT+GMR

AT Version:1.2.0.0(Jul 1 2016 20:04:45)

SDK version:1.5.4.1(39cb9a32)

Ai-Tinker Technology Co.Ltd.

Dec 2 2016 14:21:16

OK

AT+RST 软重启模组

AT+RST

OK

AT+RESTORE 重启模组为出厂设置

AT+RESTORE

OK

 ESP-01S硬件连接:

要使用ESP-01S模块,你需要将其与主控制器(如Arduino、STM32等)进行连接。下面是一个示例的硬件连接图,以ESP-01S与STM32开发板连接为例:

ESP-01S      STM32
TX    <---->  RX
RX    <---->  TX
GND   <---->  GND
VCC   <---->  3.3V

通过将ESP-01S的TX引脚连接到STM32的RX引脚,并将ESP-01S的RX引脚连接到STM32的TX引脚,你可以通过串口实现两者之间的通信。

ESP-01S固件烧录和配置:

在使用ESP-01S模块之前,你需要将合适的固件烧录到模块中,并进行相应的配置。以下是一个简单的步骤:

  1. 下载并安装ESP8266固件烧录工具,如ESP8266 Flasher,可以在Espressif Systems的官方网站上找到。
  2. 下载适用于ESP-01S的固件,通常是基于ESP8266的AT固件。
  3. 使用烧录工具将固件烧录到ESP-01S模块中。确保选择正确的串口和固件文件。
  4. 配置串口通信参数,如波特率等。通常,ESP-01S默认波特率为115200。

完成以上步骤后,你的ESP-01S模块就准备好进行WiFi控制了。

通过stm32开发板进行WiFi控制:

要使用STM32开发板与ESP-01S模块进行WiFi控制,你可以通过串口通信将STM32与ESP-01S连接起来,并利用STM32的UART功能与ESP-01S进行通信。

下面的例子是使用stm32上的uart通信协议进行控制的:

HAL库开发:

#include "stm32f4xx_hal.h"

#define ESP_UART_PORT             USART2
#define ESP_UART_BAUDRATE         115200

UART_HandleTypeDef huart2;

void SystemClock_Config(void);

void uart_init(void) {
  huart2.Instance = ESP_UART_PORT;
  huart2.Init.BaudRate = ESP_UART_BAUDRATE;
  huart2.Init.WordLength = UART_WORDLENGTH_8B;
  huart2.Init.StopBits = UART_STOPBITS_1;
  huart2.Init.Parity = UART_PARITY_NONE;
  huart2.Init.Mode = UART_MODE_TX_RX;
  huart2.Init.HwFlowCtl = UART_HWCONTROL_NONE;
  huart2.Init.OverSampling = UART_OVERSAMPLING_16;

  if (HAL_UART_Init(&huart2) != HAL_OK) {
    // 初始化错误处理
    while (1);
  }
}

void uart_send_byte(uint8_t data) {
  HAL_UART_Transmit(&huart2, &data, 1, HAL_MAX_DELAY);
}

uint8_t uart_receive_byte(void) {
  uint8_t data;
  HAL_UART_Receive(&huart2, &data, 1, HAL_MAX_DELAY);
  return data;
}

int main(void) {
  HAL_Init();
  SystemClock_Config();

  uart_init();

  while (1) {
    // 与ESP-01S进行通信
    uart_send_byte('H');  // 发送数据到ESP-01S
    uint8_t received_data = uart_receive_byte();  // 接收ESP-01S发来的数据
  }
}

void SystemClock_Config(void) {
  // 配置系统时钟
  // ...
}

标准库开发:

#include "stm32f4xx.h"
#include <stdio.h>

#define ESP_UART_PORT             USART2
#define ESP_UART_BAUDRATE         115200

void uart_init(void) {
  USART_InitTypeDef USART_InitStruct;
  GPIO_InitTypeDef GPIO_InitStruct;

  // 使能USART2时钟和GPIO时钟
  RCC_APB1PeriphClockCmd(RCC_APB1Periph_USART2, ENABLE);
  RCC_AHB1PeriphClockCmd(RCC_AHB1Periph_GPIOA, ENABLE);

  // 配置USART2的TX引脚(PA2)为输出、推挽模式
  GPIO_InitStruct.GPIO_Pin = GPIO_Pin_2;
  GPIO_InitStruct.GPIO_Mode = GPIO_Mode_AF;
  GPIO_InitStruct.GPIO_OType = GPIO_OType_PP;
  GPIO_InitStruct.GPIO_PuPd = GPIO_PuPd_UP;
  GPIO_InitStruct.GPIO_Speed = GPIO_Speed_50MHz;
  GPIO_Init(GPIOA, &GPIO_InitStruct);

  // 将PA2引脚复用为USART2的TX功能
  GPIO_PinAFConfig(GPIOA, GPIO_PinSource2, GPIO_AF_USART2);

  // 初始化USART2的参数
  USART_InitStruct.USART_BaudRate = ESP_UART_BAUDRATE;
  USART_InitStruct.USART_WordLength = USART_WordLength_8b;
  USART_InitStruct.USART_StopBits = USART_StopBits_1;
  USART_InitStruct.USART_Parity = USART_Parity_No;
  USART_InitStruct.USART_HardwareFlowControl = USART_HardwareFlowControl_None;
  USART_InitStruct.USART_Mode = USART_Mode_Tx;
  USART_Init(ESP_UART_PORT, &USART_InitStruct);

  // 使能USART2
  USART_Cmd(ESP_UART_PORT, ENABLE);
}

void uart_send_byte(uint8_t data) {
  while (!(ESP_UART_PORT->SR & USART_FLAG_TXE));    // 等待发送完成
  ESP_UART_PORT->DR = (data & 0xFF);
}

uint8_t uart_receive_byte(void) {
  while (!(ESP_UART_PORT->SR & USART_FLAG_RXNE));   // 等待接收完成
  return (ESP_UART_PORT->DR & 0xFF);
}

int main(void) {
  uart_init();

  while (1) {
    // 与ESP-01S进行通信
    uart_send_byte('H');  // 发送数据到ESP-01S
    uint8_t received_data = uart_receive_byte();  // 接收ESP-01S发来的数据
  }
}

通过ESP-01S模块使用AT指令进行WiFi连接和控制。你可以在STM32的代码中使用uart_send_byte()函数发送AT指令到ESP-01S,并使用uart_receive_byte()函数接收ESP-01S的响应。根据ESP-01S的文档,你可以发送AT+CWMODEAT+CWJAP等指令来配置WiFi连接和进行其他控制操作。

基于Arduino主控制器:

#include <SoftwareSerial.h>

SoftwareSerial espSerial(2, 3);  // 设置ESP-01S的RX和TX引脚

void setup() {
  Serial.begin(9600);           // 打开串口监视器
  espSerial.begin(115200);      // 设置ESP-01S的波特率
  delay(1000);                  // 等待ESP-01S模块初始化
  WiFiConnect();                // 连接到WiFi网络
}

void loop() {
  if (espSerial.available()) {
    char data = espSerial.read();  // 读取ESP-01S发来的数据
    Serial.write(data);            // 将数据发送到串口监视器

    if (data == '1') {
      digitalWrite(LED_BUILTIN, HIGH);  // 打开LED灯
    } else if (data == '0') {
      digitalWrite(LED_BUILTIN, LOW);   // 关闭LED灯
    }
  }
}

void WiFiConnect() {
  espSerial.println("AT+CWJAP=\"your-ssid\",\"your-password\"");  // 输入你的WiFi名称和密码
  delay(5000);  // 等待5秒钟,等待ESP-01S连接到WiFi网络

  espSerial.println("AT+CIPMUX=0");  // 设置单连接模式
  delay(1000);  // 等待1秒钟

  espSerial.println("AT+CIPMODE=1");  // 设置透传模式
  delay(1000);  //等待1秒钟

espSerial.println(“AT+CIPSTART=“TCP”,“your-server-ip”,your-port”); // 输入你的服务器IP地址和端口号
delay(2000); // 等待2秒钟,建立TCP连接

espSerial.println(“AT+CIPSEND”); // 进入发送模式
delay(1000); // 等待1秒钟

espSerial.println(“GET /api/control?command=1 HTTP/1.1\r\nHost: your-server-ip\r\nConnection: close”); // 发送请求到服务器
delay(1000); // 等待1秒钟

espSerial.println(“+++”); // 退出透传模式
delay(1000); // 等待1秒钟

espSerial.println(“AT+CIPCLOSE”); // 关闭TCP连接
delay(1000); // 等待1秒钟

espSerial.println(“AT+RST”); // 重启ESP-01S
}

在上述代码中,首先我们需要通过软串口(SoftwareSerial)库将Arduino的两个数字引脚与ESP-01S的RX和TX引脚相连。然后,在setup()函数中,我们初始化了串口,并使用WiFiConnect()函数连接到WiFi网络。 在loop()函数中,我们检测ESP-01S是否有数据可读取,如果有,我们将数据发送到串口监视器,并根据数据的值控制LED灯的开关。 WiFiConnect()函数中,我们发送了一系列的AT指令来配置ESP-01S模块。请确保根据你的实际情况修改相应的参数,例如WiFi的名称和密码,服务器的IP地址和端口号。

总结:

本文介绍了ESP-01S模块的串口、功能、特点以及如何进行WiFi控制。我们通过与stm32和Arduino进行串口通信,并使用AT指令实现了简单的WiFi连接和控制示例。 ESP-01S模块具有广泛的应用领域,特别适用于物联网和嵌入式系统。你可以根据自己的项目需求,进一步探索ESP-01S的功能和特性,并结合其他传感器或执行器进行更复杂的应用开发。 

版权声明:本文为博主原创文章,遵循 CC 4.0 BY-SA 版权协议,转载请附上原文出处链接和本声明。
本文链接:https://blog.csdn.net/Goforyouqp/article/details/131788506

智能推荐

oracle 12c 集群安装后的检查_12c查看crs状态-程序员宅基地

文章浏览阅读1.6k次。安装配置gi、安装数据库软件、dbca建库见下:http://blog.csdn.net/kadwf123/article/details/784299611、检查集群节点及状态:[root@rac2 ~]# olsnodes -srac1 Activerac2 Activerac3 Activerac4 Active[root@rac2 ~]_12c查看crs状态

解决jupyter notebook无法找到虚拟环境的问题_jupyter没有pytorch环境-程序员宅基地

文章浏览阅读1.3w次,点赞45次,收藏99次。我个人用的是anaconda3的一个python集成环境,自带jupyter notebook,但在我打开jupyter notebook界面后,却找不到对应的虚拟环境,原来是jupyter notebook只是通用于下载anaconda时自带的环境,其他环境要想使用必须手动下载一些库:1.首先进入到自己创建的虚拟环境(pytorch是虚拟环境的名字)activate pytorch2.在该环境下下载这个库conda install ipykernelconda install nb__jupyter没有pytorch环境

国内安装scoop的保姆教程_scoop-cn-程序员宅基地

文章浏览阅读5.2k次,点赞19次,收藏28次。选择scoop纯属意外,也是无奈,因为电脑用户被锁了管理员权限,所有exe安装程序都无法安装,只可以用绿色软件,最后被我发现scoop,省去了到处下载XXX绿色版的烦恼,当然scoop里需要管理员权限的软件也跟我无缘了(譬如everything)。推荐添加dorado这个bucket镜像,里面很多中文软件,但是部分国外的软件下载地址在github,可能无法下载。以上两个是官方bucket的国内镜像,所有软件建议优先从这里下载。上面可以看到很多bucket以及软件数。如果官网登陆不了可以试一下以下方式。_scoop-cn

Element ui colorpicker在Vue中的使用_vue el-color-picker-程序员宅基地

文章浏览阅读4.5k次,点赞2次,收藏3次。首先要有一个color-picker组件 <el-color-picker v-model="headcolor"></el-color-picker>在data里面data() { return {headcolor: ’ #278add ’ //这里可以选择一个默认的颜色} }然后在你想要改变颜色的地方用v-bind绑定就好了,例如:这里的:sty..._vue el-color-picker

迅为iTOP-4412精英版之烧写内核移植后的镜像_exynos 4412 刷机-程序员宅基地

文章浏览阅读640次。基于芯片日益增长的问题,所以内核开发者们引入了新的方法,就是在内核中只保留函数,而数据则不包含,由用户(应用程序员)自己把数据按照规定的格式编写,并放在约定的地方,为了不占用过多的内存,还要求数据以根精简的方式编写。boot启动时,传参给内核,告诉内核设备树文件和kernel的位置,内核启动时根据地址去找到设备树文件,再利用专用的编译器去反编译dtb文件,将dtb还原成数据结构,以供驱动的函数去调用。firmware是三星的一个固件的设备信息,因为找不到固件,所以内核启动不成功。_exynos 4412 刷机

Linux系统配置jdk_linux配置jdk-程序员宅基地

文章浏览阅读2w次,点赞24次,收藏42次。Linux系统配置jdkLinux学习教程,Linux入门教程(超详细)_linux配置jdk

随便推点

matlab(4):特殊符号的输入_matlab微米怎么输入-程序员宅基地

文章浏览阅读3.3k次,点赞5次,收藏19次。xlabel('\delta');ylabel('AUC');具体符号的对照表参照下图:_matlab微米怎么输入

C语言程序设计-文件(打开与关闭、顺序、二进制读写)-程序员宅基地

文章浏览阅读119次。顺序读写指的是按照文件中数据的顺序进行读取或写入。对于文本文件,可以使用fgets、fputs、fscanf、fprintf等函数进行顺序读写。在C语言中,对文件的操作通常涉及文件的打开、读写以及关闭。文件的打开使用fopen函数,而关闭则使用fclose函数。在C语言中,可以使用fread和fwrite函数进行二进制读写。‍ Biaoge 于2024-03-09 23:51发布 阅读量:7 ️文章类型:【 C语言程序设计 】在C语言中,用于打开文件的函数是____,用于关闭文件的函数是____。

Touchdesigner自学笔记之三_touchdesigner怎么让一个模型跟着鼠标移动-程序员宅基地

文章浏览阅读3.4k次,点赞2次,收藏13次。跟随鼠标移动的粒子以grid(SOP)为partical(SOP)的资源模板,调整后连接【Geo组合+point spirit(MAT)】,在连接【feedback组合】适当调整。影响粒子动态的节点【metaball(SOP)+force(SOP)】添加mouse in(CHOP)鼠标位置到metaball的坐标,实现鼠标影响。..._touchdesigner怎么让一个模型跟着鼠标移动

【附源码】基于java的校园停车场管理系统的设计与实现61m0e9计算机毕设SSM_基于java技术的停车场管理系统实现与设计-程序员宅基地

文章浏览阅读178次。项目运行环境配置:Jdk1.8 + Tomcat7.0 + Mysql + HBuilderX(Webstorm也行)+ Eclispe(IntelliJ IDEA,Eclispe,MyEclispe,Sts都支持)。项目技术:Springboot + mybatis + Maven +mysql5.7或8.0+html+css+js等等组成,B/S模式 + Maven管理等等。环境需要1.运行环境:最好是java jdk 1.8,我们在这个平台上运行的。其他版本理论上也可以。_基于java技术的停车场管理系统实现与设计

Android系统播放器MediaPlayer源码分析_android多媒体播放源码分析 时序图-程序员宅基地

文章浏览阅读3.5k次。前言对于MediaPlayer播放器的源码分析内容相对来说比较多,会从Java-&amp;amp;gt;Jni-&amp;amp;gt;C/C++慢慢分析,后面会慢慢更新。另外,博客只作为自己学习记录的一种方式,对于其他的不过多的评论。MediaPlayerDemopublic class MainActivity extends AppCompatActivity implements SurfaceHolder.Cal..._android多媒体播放源码分析 时序图

java 数据结构与算法 ——快速排序法-程序员宅基地

文章浏览阅读2.4k次,点赞41次,收藏13次。java 数据结构与算法 ——快速排序法_快速排序法